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In Song (2021) [1] the authors proposed an ingenious trick by which the stochastic diffusion
process can be effectively replaced by a deterministic drift process, thus enable the retrieve of the
original data distribution from random noise. In this draft I would like to show that the spirit
behind Song (2021) is precisely a simulation of quasi-static equilibrium process free of entropy
production, and can be perceived simply as an equilibrated Ohm’s law.

1 Thermodynamic equilibrium inside a conductor

The current of particles, say electrons, reads

J(x, t) = u(x, t)ρ(x, t) (1)

where u is the drift velocity of electrons induced by an electric field u = µE, with µ the mobility of
electrons, and ρ the local density of electrons. Indeed this is equivalent to Ohm’s law of the vector
form J = σE. WLOG, I assumed a 1D system so that all variables are scalers.

However, this is only true inside a conductor of infinite size, or a circular loop, when the particles
are free to move into certain direction without ending up a static equilibrium state. Eq.(1) needs
some dynamical revision to account for the finial equilibrium state. Figure.1 is an illustration of the

Figure 1: Illustration of the finial density profile in a finite system subjected to an external field.

electron density distribution inside a finite conductor that is subjected to an external electric field.
Electron density ρ stops its drift evolution once such thermodynamic equilibrium is established;
and from this moment forth, the thermal diffusion completely counteracts the drift velocity so the
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ρ remains static. This process can be described by a diffusive velocity opposite to the drift velocity,
such that the dynamical current becomes

J(x, t) = u(x, t)ρ(x, t)−D∂xρ(x, t) (2)

where D is a phenomenological diffusion coefficient that is ultimately related to the Gaussian
variance of Brownian motion. At the moment te when equilibrum is established, ρ stops evolving,
hence J(x, te) must vanish. This means the drift contribution must cancel the diffusive contribution:

u(x, te)ρ(x, te) = D∂xρ(x, te) (3)

so that

u = D
∂xρ

ρ
= D ∂x(log ρ) (4)

This is exactly the same as in Song (2021), where the drift velocity is

u(X, t) = −σ
2

2
(∂X logPt(X)) (5)

with the phenomenological diffusion coefficient D = σ2/2; and the negative sign is because in Song
(2021) diffusion is set as the positive direction.

Therefore, it is clear that the method proposed by Song et al is a simulation of quasi-static
equilibrium, reversible process with zero-entropy production. It can be perceived as starting from
the distribution profile shown in Fig.1 which is held there by some fictitious field, and quasi-
statically weakening the field so that the density profile diffuses quasi-statically while retaining the
equilibrium.

2 From Stochastic Differential Equation1

The Fokker–Planck equation (FPE) plays a role in stochastic systems analogous to that of the
Liouville equation in deterministic mechanical systems. Namely, the FPE describes in a statistical
sense how a collection of initial data evolves in time. Just as Liouville equation can be inferred
from the statistical ensumble of macroscopically large number of microscopic particles, FPE can
be inferred from the microscopic stochastic differential equation (SDE). The generic SDE reads

Xt+∆t = Xt + µ(Xt, t)∆t+ σ(Xt, t)
√

∆t et (6)

where Xt is a random variable that denotes the position of a Brownian particle, µ and σ correspond
to the drift and diffusive dynamics respectively, and et is a stochastic Gaussian force that drives
the diffusive process. We are interested in a deterministic description of this random process. We
start with the simplest case, i.e. in absence of the drift process. The SDE then reads

Xt+∆t = Xt + σ
√

∆t et (7)

Formally we can define an ancillary test function h(X) which would assist us in deriving the
probability evolution Xt ∼ Pt(X). The expectation of h(Xt) evolves according to

E[h(Xt+∆t)] = E[h(Xt + σ
√

∆t et)]

= E

[
h(Xt) + h′(Xt)σ

√
∆t et +

1

2
h′′(Xt)σ

2∆t e2
t

]
= E[h(Xt)] +

1

2
σ2∆t E[h′′(Xt)]

(8)

1This section is an annotation of Prof. Y.N. Wu’s online lecture on Jan.21 2022, UCLA
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where we used E(et) = 0 and E(e2
t ) = V ar(et) = 1. Hence we have

E[h(Xt+∆t)]− E[h(Xt)] =
1

2
σ2∆t E[h′′(Xt)] (9)

On the other hand, the above equation can be written in probablistic language as∫
h(X)Pt+∆t(X)dX −

∫
h(x)Pt(X)dX =

1

2
σ2∆t

∫
h′′(X)Pt(X)dX

=
1

2
σ2∆t

∫
h(X)∂2

XPt(X)dX

(10)

Noting that the LHS is actually

L.H.S. =

∫
h(X)

∂Pt(X)

∂t
dX (11)

we have
∂Pt(X)

∂t
=
σ2

2
∂2
XPt(X) (12)

which is the diffusion process that’s responsible for the local heat flow.
Now we turn to the other extreme, where the dynamics is due only to the drift process. The

SDE reads
Xt+∆t = Xt + µ(Xt, t)∆t (13)

By the same token we have

E[h(Xt+∆t)] = E[h(Xt + µ(Xt, t)∆t)] = E[h(Xt)] + E[h′(Xt)µ(Xt, t)∆t] (14)

This is equivalent to∫
h(X)

∂Pt(X)

∂t
dX =

∫
h′(X)µ(X, t)Pt(X)dX = −

∫
h(X)d[µ(X, t)Pt(X)] (15)

so we have
∂Pt(X)

∂t
= − ∂

∂X
[µ(X, t)Pt(X)] (16)

Now we’ve derived the Fokker-Planck processes driving by drift and diffusion. By equating the two
we can derive the condition by which the diffusion can be effectively described by drift:

− ∂

∂X
(µ(X, t)Pt(X)) =

σ2

2

∂2

∂X2
Pt(X) (17)

− µ(X, t)Pt(X) =
σ2

2
∂XPt(X) =

σ2

2

(
∂

∂X
logPt(X)

)
Pt(X) (18)

µ(X, t) = −σ
2

2

(
∂

∂X
logPt(X)

)
(19)

that is, diffusion can be effectively captured by a drift process, if the drift velocity satisfies the
above equation.
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