Partial Derivative Games in Thermodynamics

Shi Feng

1 Mathematics

1.1 Chain rule review

Suppose $z=z(x, y), x=x(s, t), y=y(s, t)$ and compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
From $z=z(x, y)$ we have:

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

now we do the same thing to $d x, d y$:

$$
\begin{aligned}
d x & =\frac{\partial x}{\partial s} d s+\frac{\partial x}{\partial t} d t . \\
d y & =\frac{\partial y}{\partial s} d s+\frac{\partial y}{\partial t} d t
\end{aligned}
$$

plug into $d z$:

$$
d z=\left(\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}\right) d s+\left(\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}\right) d t
$$

therefore

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

To be more specific about the variables, we can write:

$$
\begin{aligned}
& \left(\frac{\partial z}{\partial s}\right)_{t}=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial s}\right)_{t}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial s}\right)_{t} \\
& \left(\frac{\partial z}{\partial t}\right)_{s}=\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial t}\right)_{s}+\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial t}\right)_{s}
\end{aligned}
$$

The subscript indicates which variable is to be held constant.

1.2 Multivariable derivatives

f, g, h are all functions of x, y, that is: $f=f(x, y), g=g(x, y), h=h(x, y)$

$$
\begin{equation*}
\left(\frac{\partial f}{\partial g}\right)_{h}=1 /\left(\frac{\partial g}{\partial f}\right)_{h} \tag{1}
\end{equation*}
$$

This is obvious once rewrite functions as: $f=f(g, h)$.

$$
\begin{equation*}
\left(\frac{\partial f}{\partial g}\right)_{x}=\frac{\partial f}{\partial y} / \frac{\partial g}{\partial y} \tag{2}
\end{equation*}
$$

Proof:
We can rewrite $f=f(x, y)=f(x, y(x, g)) \Rightarrow f(x, g)$, therefore:

$$
\left(\frac{\partial f}{\partial g}\right)_{x}=\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial g}\right)_{x}=\frac{\partial f}{\partial y} / \frac{\partial g}{\partial y} .
$$

Note that the DOF remains 2

$$
\begin{equation*}
\left(\frac{\partial y}{\partial x}\right)_{f}=-\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y} \tag{3}
\end{equation*}
$$

Proof:
If we hold f as a constant, then x, y are no longer independent since they're now related by $f=f(x, y)$.

$$
d f \equiv 0=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \Rightarrow \frac{\partial f}{\partial x} d x=-\frac{\partial f}{\partial y} d y
$$

since x, y are related, we can write $y=y(x, f)$, which leads to:

$$
d y=\left(\frac{\partial y}{\partial x}\right)_{f} d x+\left(\frac{\partial y}{\partial f}\right)_{x} d f=\left(\frac{\partial y}{\partial x}\right)_{f} d x+0 .
$$

compare two equations above, we then arrive at:

$$
\frac{\partial y}{\partial x}=-\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}
$$

Q.E.D

* Cyclic chain rule:

$$
\begin{equation*}
\left(\frac{\partial f}{\partial g}\right)_{h}\left(\frac{\partial g}{\partial h}\right)_{f}\left(\frac{\partial h}{\partial f}\right)_{g}=-1 \tag{4}
\end{equation*}
$$

Proof:
WLOG, we look at $\left(\frac{\partial h}{\partial f}\right)_{g}$ first, where g is held constant. Since $g=g(h, f)$, h, f become dependent variables once g is fixed:

$$
d g \equiv 0=\left(\frac{\partial g}{\partial h}\right)_{f} d h+\left(\frac{\partial g}{\partial f}\right)_{h} d f \quad \Rightarrow \quad d f=-\left(\frac{\partial g}{\partial h}\right)_{f}\left(\frac{\partial f}{\partial g}\right)_{h} d h .
$$

Therefore:

$$
\left(\frac{\partial f}{\partial h}\right)_{g}=-\left(\frac{\partial g}{\partial h}\right)_{f}\left(\frac{\partial f}{\partial g}\right)_{h} \Rightarrow\left(\frac{\partial f}{\partial g}\right)_{h}\left(\frac{\partial g}{\partial h}\right)_{f}\left(\frac{\partial h}{\partial f}\right)_{g}=-1
$$

Q.E.D

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{g}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\left(\frac{\partial y}{\partial x}\right)_{g} \tag{5}
\end{equation*}
$$

Proof:
Similarly, apply chain rule to $f=f(x, y)=f(x(x), y(x, g))$, where x is itself the parameter:

$$
\left(\frac{\partial f}{\partial x}\right)_{g}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial f}{\partial y}\left(\frac{\partial y}{\partial x}\right)_{g}=(5) .
$$

Q.E.D

1.3 Practice: 1st Law of Thermodynamics

First, look at two useful concepts, i.e. the heat capacity C, under different circumstances, it can be C_{v} or C_{p}.

$$
C=\lim _{T \rightarrow 0} \frac{Q}{\Delta T} .
$$

If the volume is fixed, $p d V=0$, then

$$
Q=U_{f}-U_{i}=\Delta U
$$

therefore:

$$
C_{v}=\lim _{\Delta T \rightarrow 0} \frac{\Delta U}{\Delta T}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

On the other hand, if the pressure is fixed, the work on the system is $W=$ $-P d V$, then:

$$
Q=\Delta U-W=\Delta U+P \Delta V
$$

therefore:

$$
C_{p}=\lim _{T \rightarrow 0} \frac{\Delta U+p \Delta V}{\Delta T}=\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}
$$

or, in terms of enthalpy: $H=U+P V$, it becomes

$$
C_{p}=\left(\frac{\partial H}{\partial T}\right)_{P}, \quad Q=\Delta H
$$

Now we play with these equations. Note that in C_{v}, the independent variables we chose are T, V, whereas in C_{p} they are P, T. If we were to study the connection between C_{v} and C_{p}, we have to express them under the same set of variables.

If there exists an equation of state $F(P, V, T)=0$ (generically there is, e.g. $\mathrm{PV}=\mathrm{nRT})$, this can be achieved by writing $U=U(T, V)=U(T, V(T, P))$. Then the partial derivative becomes:

$$
\begin{equation*}
\left(\frac{\partial U}{\partial T}\right)_{P}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} \tag{6}
\end{equation*}
$$

where the last term $\left(\frac{\partial V}{\partial T}\right)_{P}$ encodes information of equation of state.

Using this, we can rewrite C_{p} as:

$$
\begin{align*}
C_{p} & =\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P} \\
& =\left(\frac{\partial U}{\partial T}\right)_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P} \tag{7}\\
& =\left(\frac{\partial V}{\partial T}\right)_{P}\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]+C_{v}
\end{align*}
$$

or

$$
C_{p}-C_{v}=\left(\frac{\partial V}{\partial T}\right)_{P}\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]
$$

One can check that for ideal gas, it becomes the famous $C_{p}-C_{v}=n R$.
From (7) we can solve for $\left(\frac{\partial U}{\partial V}\right)_{T}$:

$$
\begin{equation*}
\left(\frac{\partial U}{\partial V}\right)_{T}=\left(C_{p}-C_{v}\right)\left(\frac{\partial T}{\partial V}\right)_{P}-P \tag{8}
\end{equation*}
$$

Why we are interested in this tedious expression? Well, if we choose T, V to be the set of independent variables, and if C_{p}, C_{v} and the Eq of state can be measured experimentally, this will be extremely useful in finding the differential of $U(T, V)$:

$$
\begin{equation*}
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \tag{9}
\end{equation*}
$$

plug in (8) into (9):

$$
\begin{equation*}
d U=C_{v} d T+\left[\left(C_{p}-C_{v}\right)\left(\frac{\partial T}{\partial V}\right)_{P}-P\right] d V \tag{10}
\end{equation*}
$$

which makes it possible to derive the internal energy by a path integral:

$$
\begin{equation*}
U=U_{0}+\int_{\partial(T, V)}\left\{C_{v} d T+\left[\left(C_{p}-C_{v}\right)\left(\frac{\partial T}{\partial V}\right)_{P}-P\right] d V\right\} \tag{11}
\end{equation*}
$$

where $\partial(T, V)$ represents the path in $T-V$ parameter space.
But what if we want it represented in P, V, since sometimes we'd like to analyze things in $P-V$ diagram more than $T-V$. Well, we can use the equation of state and derive the following:

$$
d T=\left(\frac{\partial T}{\partial P}\right)_{V} d P+\left(\frac{\partial T}{\partial V}\right)_{P} d V
$$

and plug this into (11):

$$
\begin{equation*}
d U=C_{v}\left(\frac{\partial T}{\partial P}\right)_{V} d P+\left[C_{p}\left(\frac{\partial T}{\partial V}\right)_{P}-P\right] d V \tag{12}
\end{equation*}
$$

We can use (12) to study adiabatic process, where $Q=0$ thus $S=$ Const. this means:

$$
d U+P d V=0
$$

therefore

$$
\begin{equation*}
C_{v}\left(\frac{\partial T}{\partial P}\right)_{V} d P+C_{p}\left(\frac{\partial T}{\partial V}\right)_{P} d V=0 \tag{13}
\end{equation*}
$$

simplify by applying cyclic chain rule:

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=\frac{C_{p}}{C_{v}}\left(\frac{\partial P}{\partial V}\right)_{T} \equiv \gamma\left(\frac{\partial P}{\partial V}\right)_{T}
$$

For ideal gas, this indicates the $P-V$ lines are steeper in adiabatic process than in isotherms, but may differ in other equations of state.
Now suppose the equation of state is given by:

$$
P V=F(T) .
$$

where $\mathrm{F}(\mathrm{T})$ may be some complicated function of T or ideal gas's $P V=n R T$. Therefore, after taking derivative of P, V respectively, we have:

$$
V=\frac{d F}{d T}\left(\frac{\partial T}{\partial P}\right)_{V}, \quad P=\frac{d F}{d T}\left(\frac{\partial T}{\partial V}\right)_{P}
$$

plug this into (13) we have:

$$
\begin{equation*}
C_{v} V d P+C_{p} P d V=0 \quad \Rightarrow \quad \frac{d P}{P}+\gamma \frac{d V}{V}=0 \tag{14}
\end{equation*}
$$

Therefore, in an adiabatic process:

$$
\begin{equation*}
P V^{\gamma}=C \tag{15}
\end{equation*}
$$

