Please email padayasi.1@osuredu were apple prizes, just curious \qquad
(3)

Jaychandran Padayasi

October 2021

1 Statement

Consider a set of N unique ordered objects. The scoring algorithm an attempt at sorting the ordered objects is as such:

- For every object i in the correct spot in the sequence, award N points; $s_{i}=N$.
- For every object j that ends one spot away from its position in the ordered list, award $N-1$ points: $s_{j}=N-1$.
- (Generalizing the previous rule) For every object that ends k spots away from its correct position. award $N-k$ points.

The total score \mathcal{S} for each permutation of the ordered objects is

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{N} s_{i} \tag{1}
\end{equation*}
$$

2 Questions

- What is the range of attainable scores \mathcal{S} as a function of N ?
- Conjecture: Placing the objects in the reverse order yields a score of

$$
\mathcal{S}_{\min }=\left\{\begin{array}{l}
\frac{N^{2}+1}{2}, \quad N \text { odd } \tag{2}\\
\frac{N^{2}}{2}, \quad N \text { even }
\end{array}\right.
$$

and experimentally this seems to be the lowest achievable score based on performing many random shuffles. However, for low values of N it is easy to see that there is degeneracy, i. e. many configurations can have the lowest score. Is eq. 2 the lowest possible score? How to prove it?

- What is the expected score $\mathbb{E}[\mathcal{S}]$ for a random permutation? What is the variance? A simpler question may be what is $\lim _{N \rightarrow \infty} \mathbb{E}[\mathcal{S}(N)]$?
- Using np.random.shuffle() 10000 times and calculating the average for high values of N gives the conjecture

$$
\lim _{N \rightarrow \infty} \mathbb{E}[\mathcal{S}]=\frac{2 N^{2}}{3}
$$

Solution to Jaychandran's Questions

Shi Feng

August 27, 2022

It is convenient to note that the deviation from the optimal score $\left(N^{2}\right)$ is equivalent to the L_{1} distance between a pair of points $\mathbb{1}, \sigma(\mathbb{1}) \in \mathbb{S}^{N}$. Here $\mathbb{1}$ denotes the optimal ordered list (i.e. a reference point on the N-sphere), and $\sigma(\mathbb{1})$ denotes permutations of $\mathbb{1}$ by σ, with σ an element in the S_{N} group. The distance reads:

$$
\begin{equation*}
d(\mathbb{1}, \sigma(\mathbb{1}))=\sum_{i}|i-\sigma(i)|, \quad i \in \mathbb{N} \tag{1}
\end{equation*}
$$

To see why this is an equivalent form, we can imagine a 2 D plane where the x axis represents the ordered list $\mathbb{1}$ and the y axis represents the ordered list $\sigma(\mathbb{1})$. The deviation from the optimal score $\left(N^{2}\right)$ is then given by the $L_{1}(x)$ distance (the sum of L_{1} distances only in the x coordinate). But this is equivalent to the $L_{1}(y)$ distance because of the symmetry about $y=x$. Therefore, the total deviation from the optimal score is equivalent to the sum of the pairwise difference between the two lists, which is the same as the L_{1} distance between two points in a N-sphere with the constraint that all accessible points are generated by S_{N} group.

This distance is known in statistical and the computer science community as the Spearman's Footrule Distance and is well studied by Diaconis and Graham (1977). There the authors proved the following statistical property:

$$
\begin{align*}
\mathbb{E}[d(\mathbb{1}, \sigma(\mathbb{1}))] & =\frac{1}{3} N^{2}+O(N) \tag{2}\\
\operatorname{Var}[d(\mathbb{1}, \sigma(\mathbb{1}))] & =\frac{2}{45} N^{3}+O\left(N^{2}\right) \tag{3}
\end{align*}
$$

which means the expectation of the score function is

$$
\begin{equation*}
\mathbb{E}(S)=N^{2}-\mathbb{E}[d(\mathbb{1}, \sigma(\mathbb{1}))]=\frac{2}{3} N^{2}-O(N) \tag{4}
\end{equation*}
$$

which is consistent with your conjecture; and since the variance is attributed only to the variation in deviation, we have

$$
\begin{equation*}
\operatorname{Var}(S)=\frac{2}{45} N^{3}+O\left(N^{2}\right) \tag{5}
\end{equation*}
$$

