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1 Change of variables

1.1 Single variable

Let X be a continuous random variable with a generic pdf fx(x) defined over the support ¢; < & <
c2, and let Y = u(x) be a continuous monotonically increasing funtion of X with inverse function
X =v(Y). We would like to know the pdf fy(y) of Y.

We start with the cumulative dsitribution Fy (y) of Y, written as

y
Fy(y) =P(Y <y) = ] fy (y)dy (1.1)
1
for di = u(c1) <y < u(eg) = da. Since Y = u(X), we have

Fy(y) = P(u(X) <y) (1.2)
Since the map between X and Y is invertable, the preimage of u(X) <y is X < v(y), thus
v(y)
Fr(y) = P(X <o) = [ fx(o)ds (13)
C1

Now we can take derivative of Fy (y) wrt y to get fy (y):
_ dFy(y) _ dFy(y) dv(y)

MO ==0" =0 dy X [o(y)]v'(y) (1.4)
By the same token, one can show that if v(z) is monotonically decreasing, we have
fr(y) = = fxlo()]v'(y) (1.5)
so, inconclusion, for a generic invertable funcion Y = u(X), we have
fr(y) = x| (y)] (1.6)

1.2 Multi-variable

Now suppose a pair of random variables (X7, X2) has joint pdf fx(x1,z2) and support Sx, let

(Y1,Y3) be some function of (X7, X2) defined by Y7 = u1 (X7, X2) and Ys = ug (X7, Xo) with single-

valued inverse given by X7 = v1(Y1,Y2) and Xy = v2(Y7,Y2), and let Sy be the support of Y7, Y.
The cumulative distribution F(yi,y2) is

Y1,Y2
F(y1,y2) = F(Y1 < y2, Y2 < y2) = / Ty (y1, y2)dy1dys (1.7)

dy,dz
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by the mapping between two sets of variables we have
F(Y1 <y1,Ys <o) = Flua (X1, X2) < y1,u2(X, Xa2) <y (1.8)
Since the map is invertable we have

FY1 <y1,Ys <o) = F[X1 <vi1(Y1,Y2), Xo < v2(Y1,Y2)]
v1(y1,y2)  rv2(y1,y2) (1.9)
/ / f(z1, z2)dy1dys

This gives TODO:
9(1,y2) = [Ju| flv1(y1, y2), va(y1, y2)] (1.10)

where J, is the Jacobian of the inverse map.

2 Normalizing Flows

Let x be a D-dimentional continuous random real vector, with a joint distribution p,(x). Now
suppose X is a variable transformed from another variable u via transformaion x = 7'(u):

x =T (u), where u~ p,(u) (2.1)

2.1 Expressive power

Theorem 2.1. The probabilistic flow can express any distribution p,(x) regardless of the concrete
form of base distribution

Proof. A joint probability distribution can be expressed as a regression, e.g.

p(z1,22,23)

p(x1, 2, 23, 4) = p(x1)p(ae|21) p(as|ar, x2) p(zalz1, 2, T3, T4)
—
p(z1,22)

Hence, in a compact form:
D
x) = pr($i|x<i) (2.2)
i=1

since p,(x) is always non-zero, all p,(x;|x<;) are also non-zero. Next we define the transformation
F:x — z € (0,1)P whose i-th element is given by the cumulative distribution function (CDF) of
the i-th conditional pdf:

Ty

zi = Fi(zi,x<;) = / pe(Th|x<i)dx, = Pr(x < xilx<;) (2.3)

—00
note that z; is a random variable since the upper bound of the integral x; is a random variable.
Since each Fj is differentiable wrt its inputs x;, F' is differentiable wrt x. Moreover, since
OF;
6951-

F; is a continuous monotonic function, thus invertable. Since F; does not depend on z;’s for j > 4,
we must have

= pa(Ti[x<i) 20 (2.4)

OF;
83; 5

=0 fori<y (2.5)



that is, the Jacobian of F' is a lower triangular matrix whose determinant is equal to the product
of its diagonal elements:

D ] D
det Jp(x) = [ | gf =[] pe(@ilx<i) = pa(x) (2.6)

i=1 ' =1

so that Jacobian determinant of F' is exactly p,(x), which is necessarily non-zero. Therefore

the inverse of Jp(x) exists, and is equal to the Jacobian of F~! (which is also lower triangular

z; = F; ' (8,x<;)(%)) . Therefore F is a diffeomorphism. Hence, using det Jr = ﬁ, we get
o

p=(2) = po[F~'(2)]|Jp1 [F~(2)]] = pa(x)[det Jr(x)[ 7! = pa(x)|pa(x)[ 7! = 1 (2.7)
which implies z is a uniform distribution in (0,1)”. Thus we have shown that any distribution
pz(x) can be deformed continuously into a uniform distribution. O
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