Probabilistic Normalizing Flows

Shi Feng, Deqian Kong

December 12, 2021

1 Change of variables

1.1 Single variable

Let X be a continuous random variable with a generic pdf $f_{X}(x)$ defined over the support $c_{1}<x<$ c_{2}, and let $Y=u(x)$ be a continuous monotonically increasing funtion of X with inverse function $X=v(Y)$. We would like to know the pdf $f_{Y}(y)$ of Y.

We start with the cumulative dsitribution $F_{Y}(y)$ of Y, written as

$$
\begin{equation*}
F_{Y}(y)=P(Y \leq y)=\int_{d_{1}}^{y} f_{Y}(y) d y \tag{1.1}
\end{equation*}
$$

for $d_{1}=u\left(c_{1}\right)<y<u\left(c_{2}\right)=d_{2}$. Since $Y=u(X)$, we have

$$
\begin{equation*}
F_{Y}(y)=P(u(X) \leq y) \tag{1.2}
\end{equation*}
$$

Since the map between X and Y is invertable, the preimage of $u(X) \leq y$ is $X \leq v(y)$, thus

$$
\begin{equation*}
F_{Y}(y)=P(X \leq v(y))=\int_{c_{1}}^{v(y)} f_{X}(x) d x \tag{1.3}
\end{equation*}
$$

Now we can take derivative of $F_{Y}(y)$ wrt y to get $f_{Y}(y)$:

$$
\begin{equation*}
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d F_{Y}(y)}{d v(y)} \frac{d v(y)}{d y}=f_{X}[v(y)] v^{\prime}(y) \tag{1.4}
\end{equation*}
$$

By the same token, one can show that if $v(x)$ is monotonically decreasing, we have

$$
\begin{equation*}
f_{Y}(y)=-f_{X}[v(y)] v^{\prime}(y) \tag{1.5}
\end{equation*}
$$

so, inconclusion, for a generic invertable funcion $Y=u(X)$, we have

$$
\begin{equation*}
f_{Y}(y)=f_{X}[v(y)]\left|v^{\prime}(y)\right| \tag{1.6}
\end{equation*}
$$

1.2 Multi-variable

Now suppose a pair of random variables $\left(X_{1}, X_{2}\right)$ has joint pdf $f_{X}\left(x_{1}, x_{2}\right)$ and support S_{X}, let (Y_{1}, Y_{2}) be some function of $\left(X_{1}, X_{2}\right)$ defined by $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$ with singlevalued inverse given by $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$, and let S_{Y} be the support of Y_{1}, Y_{2}.

The cumulative distribution $F\left(y_{1}, y_{2}\right)$ is

$$
\begin{equation*}
F\left(y_{1}, y_{2}\right)=F\left(Y_{1}<y_{2}, Y_{2}<y_{2}\right)=\int_{d_{1}, d_{2}}^{y_{1}, y_{2}} f_{Y}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{1.7}
\end{equation*}
$$

by the mapping between two sets of variables we have

$$
\begin{equation*}
F\left(Y_{1} \leq y_{1}, Y_{2} \leq y_{2}\right)=F\left[u_{1}\left(X_{1}, X_{2}\right) \leq y_{1}, u_{2}\left(X_{1}, X_{2}\right) \leq y_{2}\right] \tag{1.8}
\end{equation*}
$$

Since the map is invertable we have

$$
\begin{align*}
F\left(Y_{1} \leq y_{1}, Y_{2} \leq y_{2}\right) & =F\left[X_{1} \leq v_{1}\left(Y_{1}, Y_{2}\right), X_{2} \leq v_{2}\left(Y_{1}, Y_{2}\right)\right] \\
& =\int^{v_{1}\left(y_{1}, y_{2}\right)} \int^{v_{2}\left(y_{1}, y_{2}\right)} f\left(x_{1}, x_{2}\right) d y_{1} d y_{2} \tag{1.9}
\end{align*}
$$

This gives TODO:

$$
\begin{equation*}
g\left(y_{1}, y_{2}\right)=\left|J_{v}\right| f\left[v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right] \tag{1.10}
\end{equation*}
$$

where J_{v} is the Jacobian of the inverse map.

2 Normalizing Flows

Let \mathbf{x} be a D-dimentional continuous random real vector, with a joint distribution $p_{x}(\mathbf{x})$. Now suppose \mathbf{x} is a variable transformed from another variable \mathbf{u} via transformaion $\mathbf{x}=T(\mathbf{u})$:

$$
\begin{equation*}
\mathbf{x}=T(\mathbf{u}), \quad \text { where } \mathbf{u} \sim p_{u}(\mathbf{u}) \tag{2.1}
\end{equation*}
$$

2.1 Expressive power

Theorem 2.1. The probabilistic flow can express any distribution $p_{x}(\mathbf{x})$ regardless of the concrete form of base distribution

Proof. A joint probability distribution can be expressed as a regression, e.g.

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\overbrace{\underbrace{\overbrace{p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)}}_{p\left(x_{1}, x_{2}\right)} p\left(x_{3} \mid x_{1}, x_{2}\right)}^{p\left(x_{1}, x_{2}, x_{3}\right)} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Hence, in a compact form:

$$
\begin{equation*}
p_{x}(\mathbf{x})=\prod_{i=1}^{D} p_{x}\left(x_{i} \mid \mathbf{x}_{<i}\right) \tag{2.2}
\end{equation*}
$$

since $p_{x}(\mathbf{x})$ is always non-zero, all $p_{x}\left(x_{i} \mid \mathbf{x}_{<i}\right)$ are also non-zero. Next we define the transformation $F: \mathbf{x} \rightarrow \mathbf{z} \in(0,1)^{D}$ whose i-th element is given by the cumulative distribution function (CDF) of the i-th conditional pdf:

$$
\begin{equation*}
z_{i}=F_{i}\left(x_{i}, \mathbf{x}_{<i}\right)=\int_{-\infty}^{x_{i}} p_{x}\left(x_{i}^{\prime} \mid \mathbf{x}_{<i}\right) d x_{i}^{\prime}=\operatorname{Pr}\left(x_{i}^{\prime} \leq x_{i} \mid \mathbf{x}_{<i}\right) \tag{2.3}
\end{equation*}
$$

note that z_{i} is a random variable since the upper bound of the integral x_{i} is a random variable. Since each F_{i} is differentiable wrt its inputs x_{i}, F is differentiable wrt \mathbf{x}. Moreover, since

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial x_{i}}=p_{x}\left(x_{i} \mid \mathbf{x}_{<i}\right) \geq 0 \tag{2.4}
\end{equation*}
$$

F_{i} is a continuous monotonic function, thus invertable. Since F_{i} does not depend on x_{j} 's for $j>i$, we must have

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial x_{j}}=0 \text { for } i<j \tag{2.5}
\end{equation*}
$$

that is, the Jacobian of F is a lower triangular matrix whose determinant is equal to the product of its diagonal elements:

$$
\begin{equation*}
\operatorname{det} J_{F}(\mathbf{x})=\prod_{i=1}^{D} \frac{\partial F_{i}}{\partial x_{i}}=\prod_{i=1}^{D} p_{x}\left(x_{i} \mid \mathbf{x}_{<i}\right)=p_{x}(\mathbf{x}) \tag{2.6}
\end{equation*}
$$

so that Jacobian determinant of F is exactly $p_{x}(\mathbf{x})$, which is necessarily non-zero. Therefore the inverse of $J_{F}(\mathbf{x})$ exists, and is equal to the Jacobian of F^{-1} (which is also lower triangular $\left.x_{i}=F_{i}^{-1}\left(\bullet, \mathbf{x}_{<i}\right)\left(z_{i}\right)\right)$. Therefore F is a diffeomorphism. Hence, using $\operatorname{det} J_{F}=\frac{1}{\operatorname{det} J_{F^{-1}}}$, we get

$$
\begin{equation*}
p_{z}(\mathbf{z})=p_{x}\left[F^{-1}(\mathbf{z})\right]\left|J_{F^{-1}}\left[F^{-1}(\mathbf{z})\right]\right|=p_{x}(\mathbf{x})\left|\operatorname{det} J_{F}(\mathbf{x})\right|^{-1}=p_{x}(\mathbf{x})\left|p_{x}(\mathbf{x})\right|^{-1}=1 \tag{2.7}
\end{equation*}
$$

which implies \mathbf{z} is a uniform distribution in $(0,1)^{D}$. Thus we have shown that any distribution $p_{x}(\mathbf{x})$ can be deformed continuously into a uniform distribution.

References

[1] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S. \& Lakshminarayanan, B. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research 22, 1-64 (2021). URL http://jmlr.org/papers/v22/19-1028.html.

