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1 Change of variables

1.1 Single variable

Let X be a continuous random variable with a generic pdf fX(x) defined over the support c1 < x <
c2, and let Y = u(x) be a continuous monotonically increasing funtion of X with inverse function
X = v(Y ). We would like to know the pdf fY (y) of Y .

We start with the cumulative dsitribution FY (y) of Y , written as

FY (y) = P (Y ≤ y) =

∫ y

d1

fY (y)dy (1.1)

for d1 = u(c1) < y < u(c2) = d2. Since Y = u(X), we have

FY (y) = P (u(X) ≤ y) (1.2)

Since the map between X and Y is invertable, the preimage of u(X) ≤ y is X ≤ v(y), thus

FY (y) = P (X ≤ v(y)) =

∫ v(y)

c1

fX(x)dx (1.3)

Now we can take derivative of FY (y) wrt y to get fY (y):

fY (y) =
dFY (y)

dy
=

dFY (y)

dv(y)

dv(y)

dy
= fX [v(y)]v′(y) (1.4)

By the same token, one can show that if v(x) is monotonically decreasing, we have

fY (y) = −fX [v(y)]v′(y) (1.5)

so, inconclusion, for a generic invertable funcion Y = u(X), we have

fY (y) = fX [v(y)]
∣∣v′(y)

∣∣ (1.6)

1.2 Multi-variable

Now suppose a pair of random variables (X1, X2) has joint pdf fX(x1, x2) and support SX , let
(Y1, Y2) be some function of (X1, X2) defined by Y1 = u1(X1, X2) and Y2 = u2(X1, X2) with single-
valued inverse given by X1 = v1(Y1, Y2) and X2 = v2(Y1, Y2), and let SY be the support of Y1, Y2.

The cumulative distribution F (y1, y2) is

F (y1, y2) = F (Y1 < y2, Y2 < y2) =

∫ y1,y2

d1,d2

fY (y1, y2)dy1dy2 (1.7)
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by the mapping between two sets of variables we have

F (Y1 ≤ y1, Y2 ≤ y2) = F [u1(X1, X2) ≤ y1, u2(X1, X2) ≤ y2] (1.8)

Since the map is invertable we have

F (Y1 ≤ y1, Y2 ≤ y2) = F [X1 ≤ v1(Y1, Y2), X2 ≤ v2(Y1, Y2)]

=

∫ v1(y1,y2)
∫ v2(y1,y2)

f(x1, x2)dy1dy2
(1.9)

This gives TODO:
g(y1, y2) = |Jv|f [v1(y1, y2), v2(y1, y2)] (1.10)

where Jv is the Jacobian of the inverse map.

2 Normalizing Flows

Let x be a D-dimentional continuous random real vector, with a joint distribution px(x). Now
suppose x is a variable transformed from another variable u via transformaion x = T (u):

x = T (u), where u ∼ pu(u) (2.1)

2.1 Expressive power

Theorem 2.1. The probabilistic flow can express any distribution px(x) regardless of the concrete
form of base distribution

Proof. A joint probability distribution can be expressed as a regression, e.g.

p(x1, x2, x3, x4) =

p(x1,x2,x3)︷ ︸︸ ︷
p(x1)p(x2|x1)︸ ︷︷ ︸

p(x1,x2)

p(x3|x1, x2) p(x4|x1, x2, x3, x4)

Hence, in a compact form:

px(x) =
D∏
i=1

px(xi|x<i) (2.2)

since px(x) is always non-zero, all px(xi|x<i) are also non-zero. Next we define the transformation
F : x → z ∈ (0, 1)D whose i-th element is given by the cumulative distribution function (CDF) of
the i-th conditional pdf:

zi = Fi(xi,x<i) =

∫ xi

−∞
px(x′i|x<i)dx

′
i = Pr(x′i ≤ xi|x<i) (2.3)

note that zi is a random variable since the upper bound of the integral xi is a random variable.
Since each Fi is differentiable wrt its inputs xi, F is differentiable wrt x. Moreover, since

∂Fi

∂xi
= px(xi|x<i) ≥ 0 (2.4)

Fi is a continuous monotonic function, thus invertable. Since Fi does not depend on xj ’s for j > i,
we must have

∂Fi

∂xj
= 0 for i < j (2.5)
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that is, the Jacobian of F is a lower triangular matrix whose determinant is equal to the product
of its diagonal elements:

det JF (x) =
D∏
i=1

∂Fi

∂xi
=

D∏
i=1

px(xi|x<i) = px(x) (2.6)

so that Jacobian determinant of F is exactly px(x), which is necessarily non-zero. Therefore
the inverse of JF (x) exists, and is equal to the Jacobian of F−1 (which is also lower triangular
xi = F−1i (•,x<i)(zi)) . Therefore F is a diffeomorphism. Hence, using det JF = 1

det JF−1
, we get

pz(z) = px[F−1(z)]
∣∣JF−1 [F−1(z)]

∣∣ = px(x)|det JF (x)|−1 = px(x)|px(x)|−1 = 1 (2.7)

which implies z is a uniform distribution in (0, 1)D. Thus we have shown that any distribution
px(x) can be deformed continuously into a uniform distribution.
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