Understanding Boring Hamiltonians

Shi Feng

April 27, 2022

1 Spins in orthogonal fields

In quantum mechanics, Ising model is the simpliest non-trivial toy model, whose local energy reads $\sigma_{i}^{z} \sigma_{i+1}^{z}+g \sigma_{i}^{x}$. However, we can readily write down an even simpler but boring Hamiltonian:

$$
\begin{equation*}
H=\sum_{i} \sigma_{i}^{z}+g \sum_{i} \sigma_{i}^{x} \tag{1}
\end{equation*}
$$

where the n.n. coupling is absent. Yet, like Ising model, there is competition between z-polarized state and x-polarized state nonetheless and the two contributions to Hamiltonian do not commute with each other. However, this apparent competition turns out to be trivial under some rotation.

This can be proved by constructing a rotation about y-axis by some angle θ, such that the Hamiltonian becomes a single pauli matrix afterwards. The rotation about y-axis by θ is given by the unitary operator:

$$
\begin{equation*}
R=\exp \left(-i \theta S_{y}\right)=\exp \left(-i \frac{\theta}{2} \sigma_{y}\right)=\cos \left(\frac{\theta}{2}\right)-i \sigma^{y} \sin \left(\frac{\theta}{2}\right) \tag{2}
\end{equation*}
$$

so that for a single site, σ^{z} becomes

$$
\begin{align*}
R^{\dagger} \sigma^{z} R & =\left[\cos \left(\frac{\theta}{2}\right)+i \sigma^{y} \sin \left(\frac{\theta}{2}\right)\right] \sigma^{z}\left[\cos \left(\frac{\theta}{2}\right)-i \sigma^{y} \sin \left(\frac{\theta}{2}\right)\right] \tag{3}\\
& =\sigma^{z} \cos \theta-\sigma^{x} \sin \theta
\end{align*}
$$

and the second term in Eq. 1 becomes:

$$
\begin{align*}
R^{\dagger}\left(g \sigma^{x}\right) R & =g\left[\cos \left(\frac{\theta}{2}\right)+i \sigma^{y} \sin \left(\frac{\theta}{2}\right)\right] \sigma^{x}\left[\cos \left(\frac{\theta}{2}\right)-i \sigma^{y} \sin \left(\frac{\theta}{2}\right)\right] \tag{4}\\
& =\sigma^{x} g \cos \theta+\sigma^{z} g \sin \theta
\end{align*}
$$

so that the onsite Hamiltonian density is

$$
\begin{equation*}
h_{i}=(\cos \theta+g \sin \theta) \sigma^{z}+(g \cos \theta-\sin \theta) \sigma^{x} \tag{5}
\end{equation*}
$$

with $H=\sum_{i} h_{i}$. Now let us define θ :

$$
\begin{equation*}
\theta=\tan ^{-1} g \tag{6}
\end{equation*}
$$

such that the second term in Eq. 5 becomes

$$
\begin{equation*}
g \cos \theta-\sin \theta=\cos \theta(g-\tan \theta)=\cos (g-g)=0 \tag{7}
\end{equation*}
$$

and the first term in Eq.5:

$$
\begin{equation*}
\cos \theta+g \sin \theta=\cos \theta(1+g \tan \theta)=\cos \theta\left(1+g^{2}\right)=\sqrt{1+g^{2}} \tag{8}
\end{equation*}
$$

where we used $\cos \theta=1 / \sqrt{1+g^{2}}$. Therefore, by a global rotation $\prod_{i} R_{i}$ the Hamiltonian is essentially a trivial one:

$$
\begin{equation*}
H=\sqrt{1+g^{2}} \sum_{i} \sigma_{i}^{z} \tag{9}
\end{equation*}
$$

Therefore we won't see any phase transition or singularity as we tune g even if σ_{x} and σ_{z} doesn't commute: the continuous symmetry is always present and will never break into discrete ones.

2 Hopping Fermions

The most boring Fermionic Hamiltonian one can write down is

$$
\begin{equation*}
H=t c_{1}^{\dagger} c_{2}+t c_{2}^{\dagger} c_{1} \tag{10}
\end{equation*}
$$

For convenience we write it in the matrix form:

$$
H=\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & t \tag{11}\\
t & 0
\end{array}\right)\binom{c_{1}^{\dagger}}{c_{2}^{\dagger}}
$$

In order to rotate $t \sigma_{x}$ to a diagonal matrix, i.e. into σ_{z}, we again apply a rotation about y axis by $R=\exp \left(-i \frac{\theta}{2} \sigma_{y}\right)$.

$$
\begin{equation*}
R^{\dagger} \sigma^{x} R=\sigma^{x} \cos \theta+\sigma^{z} \sin \theta \tag{12}
\end{equation*}
$$

setting $\theta=\frac{\pi}{2}$ gives $R=\frac{\sqrt{2}}{2}-i \sigma^{y} \frac{\sqrt{2}}{2}$ and $R^{\dagger} \sigma^{x} R=\sigma^{z}$. So the resulting Hamiltonian is

$$
\begin{equation*}
H=t \hat{\psi} \sigma^{z} \hat{\psi}^{\dagger}=t \hat{\psi}_{1}^{\dagger} \hat{\psi}_{1}-t \hat{\psi}_{2}^{\dagger} \hat{\psi}_{2} \tag{13}
\end{equation*}
$$

where the normal mode is given by

$$
\hat{\psi}^{\dagger}=\binom{\hat{\psi}_{1}^{\dagger}}{\hat{\psi}_{2}^{\dagger}}=R^{\dagger}\binom{c_{1}^{\dagger}}{c_{2}^{\dagger}}=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & 1 \tag{14}\\
-1 & 1
\end{array}\right)\binom{c_{1}^{\dagger}}{c_{2}^{\dagger}}=\frac{\sqrt{2}}{2}\binom{c_{1}^{\dagger}+c_{2}^{\dagger}}{c_{2}^{\dagger}-c_{1}^{\dagger}}
$$

so the eigen states of the Hamiltonian besides $|0\rangle$ are

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=\frac{\sqrt{2}}{2}\left(c_{1}^{\dagger}+c_{2}^{\dagger}\right)|0\rangle,\left|\psi_{2}\right\rangle=-\frac{\sqrt{2}}{2}\left(c_{1}^{\dagger}-c_{2}^{\dagger}\right)|0\rangle \tag{15}
\end{equation*}
$$

At half filling, $\left|\psi_{1}\right\rangle$ is the excited state with energy t and $\left|\psi_{2}\right\rangle=\left|\psi_{g}\right\rangle$ is the ground state with energy $-t$. By the same token we can write down eigen states for spinful hopping particles whose Hamiltonian is

$$
\begin{equation*}
H=t \sum_{\sigma} c_{1, \sigma}^{\dagger} c_{2, \sigma}+c_{2, \sigma}^{\dagger} c_{1, \sigma} \tag{16}
\end{equation*}
$$

where $\sigma= \pm$ denotes \uparrow and \downarrow. At one-particle filling (which is not half-filling for spinful particle! half-filling for spinful two-site system has two particles!), the ground state energy is two-fold degenerate:

$$
\begin{equation*}
\left|\psi_{g, \pm}\right\rangle=-\frac{\sqrt{2}}{2}\left(c_{1, \pm}^{\dagger}-c_{2, \pm}^{\dagger}\right)|0\rangle, \quad E_{g, \pm}=-t \tag{17}
\end{equation*}
$$

whose magnetization per site is

$$
\begin{equation*}
\left\langle\psi_{g, \pm}\right| S_{i}^{z}\left|\psi_{g, \pm}\right\rangle= \pm \frac{1}{4} \tag{18}
\end{equation*}
$$

Therefore for different cat states

$$
\begin{equation*}
\left|\psi_{g}(\alpha)\right\rangle=\alpha\left|\psi_{g,+}\right\rangle+\sqrt{1-\alpha^{2}}\left|\psi_{g,-}\right\rangle \tag{19}
\end{equation*}
$$

the magnetization can be different. Numeraically, to break this cat-state symmetry one has to add a small pinning potential.

At half-filling (two-particle filling), the Hamiltonian in the diagonal basis reads

$$
\begin{equation*}
H=t \hat{\psi}_{1, \uparrow}^{\dagger} \hat{\psi}_{1, \uparrow}-t \hat{\psi}_{2, \uparrow}^{\dagger} \hat{\psi}_{2, \uparrow}+t \hat{\psi}_{1, \downarrow}^{\dagger} \hat{\psi}_{1, \downarrow}-t \hat{\psi}_{2, \downarrow}^{\dagger} \hat{\psi}_{2, \downarrow} \tag{20}
\end{equation*}
$$

The ground state then has to fill $\psi_{2, \uparrow}$ and $\psi_{2, \downarrow}$, both with energy $-t$, hence

$$
\begin{equation*}
\left|\psi_{g}\right\rangle=\hat{\psi}_{2, \uparrow}^{\dagger} \hat{\psi}_{2, \downarrow}^{\dagger}|0\rangle \tag{21}
\end{equation*}
$$

By Eq. 15 dressed with spin, we have

$$
\begin{equation*}
\left|\psi_{g}\right\rangle=\frac{1}{2}\left(c_{1, \uparrow}^{\dagger} c_{1, \downarrow}^{\dagger}+c_{2, \uparrow}^{\dagger} \uparrow_{2, \downarrow}^{\dagger}-c_{1, \uparrow}^{\dagger} c_{2, \downarrow}^{\dagger}-c_{2, \uparrow}^{\dagger} c_{1, \downarrow}^{\dagger}\right)|0\rangle \tag{22}
\end{equation*}
$$

