On Black Body Radiation

Shi Feng

1 Planck Distribution Function

Let the energy of s-th photon mode denoted by $\epsilon_s = s\hbar\omega$. The probability that the system is in the state of s of energy ϵ_s is given by the Boltzmann factor:

$$P(s) = \exp(-s\hbar\omega/k_BT) \tag{1.1}$$

then the thermal average value of s is

$$\langle s \rangle = \sum_{s=0}^{\infty} sP(s) = \frac{1}{Z} \sum_{s=0}^{\infty} s \exp(-s\hbar\omega/k_B T)$$
(1.2)

with $y \equiv \hbar \omega / k_B T$, the summation can be written as

$$\sum_{s=0}^{\infty} s \exp(-sy) = -\frac{d}{dy} \sum_{s=0}^{\infty} \exp(-sy)$$

$$= -\frac{d}{dy} \left(\frac{1}{1 - \exp(-y)}\right) = \frac{\exp(-y)}{[1 - \exp(-y)]^2} = \frac{\exp(-\hbar\omega/k_B T)}{[1 - \exp(-\hbar\omega/k_B T)]^2}$$
(1.3)

and the partition function can be evaluated as

$$Z = \frac{1}{1 - \exp(-\hbar\omega/k_B T)} \tag{1.4}$$

so we have

$$\langle s \rangle = \frac{\exp(-\hbar\omega/k_B T)}{1 - \exp(-\hbar\omega/k_B T)}$$
(1.5)

or equivalently

$$\langle s \rangle = \frac{1}{\exp(\hbar\omega/k_B T) - 1} \tag{1.6}$$

This is called the Plank distribution function which essentially converges to the Bose-Einstein distribution. Note that $\langle s \rangle$ is dependent of frequency ω . Here $\langle s(\omega) \rangle$ means the thermal average of the number of photons in the mode of frequency ω .

2 Plank Law and Stefan-Boltzmann Law

According to previous section, the thermal average energy of mode s is

$$\langle \epsilon_s \rangle = \langle s \rangle \, \hbar \omega = \frac{\hbar \omega}{\exp(\hbar \omega / k_B T) - 1}$$
(2.1)

The high temperature limit $k_B T \gg \hbar \omega$ is dubbed classical limit, where $\exp(\hbar \omega / k_B T)$ may be approximated as

$$\exp(\hbar\omega/k_B T) \approx 1 + \hbar\omega/k_B T + \cdots$$
(2.2)

thus in the classical limit the thermal average energy of the mode is

$$\langle \epsilon_s \rangle \approx k_B T \tag{2.3}$$

which is only a temperature of T and no longer depends on ω . This is consistent with the equal partition theorem of dof = 1.

Generically, we need to sum over all modes with their respective energy ϵ_n such that the total energy is to be given by $U = \sum_n \langle \epsilon_n \rangle$. To do this, we first need to define all available modes and the allowed frequencies ω_n (Ref. K&K, P93 [111 of 495]). The result from electrodynamics gives us

$$\omega_b = n\pi c/L \tag{2.4}$$

then the total energy is

$$U = \sum_{n} \langle \epsilon_n \rangle = \sum_{n} \frac{\hbar \omega_n}{\exp(\hbar \omega_n / k_B T) - 1}$$
(2.5)

where $n \equiv \sqrt{n_x^2 + n_y^2 + n_z^2}$ with n_i integers. We replace the sum over n_x, n_y, n_z by $dn_x dn_y dn_z$ in space. The summation is then written in integral as

$$\sum_{n} f(n) \approx \iiint_{0}^{\infty} f(n) dn_{x} dn_{y} dn_{z} = \frac{1}{8} \int_{0}^{\infty} 4\pi n^{2} f(n) dn$$
(2.6)

where 1/8 is due to $n_i \ge 0$ thus only the positive octant of the space is involved, and the last step we assumed the isotropy of photon energy density. We now multiply the sum or integral by a factor of 2 because there are two independent polarizations of the electromagnetic field (two independent sets of cavity modes). Thus, using $\omega_n = \pi cn/L$ we have

$$U = \pi \int_0^\infty dn \, n^2 \frac{\hbar \omega_n}{\exp(\hbar \omega_n / k_B T) - 1}$$

= $\frac{\pi^2 \hbar c}{L} \int_0^\infty dn \, n^3 \frac{1}{\exp(\hbar n c \pi / L k_B T) - 1}$ (2.7)

to evaluate this, we set $x \equiv \pi \hbar c n / L k_B T$, thus $n = (L k_B T / \pi \hbar c) x$ and $dn = (L k_B T / \pi \hbar c) dx$, then the integral becomes

$$U = \frac{\pi^2 \hbar c}{L} \left(\frac{k_B T L}{\pi \hbar c}\right)^4 \int_0^\infty dx \frac{x^3}{\exp(x) - 1}$$
(2.8)

the definite integral evaluates to $\pi^4/15$. Then, the energy per unit volume is found to be

$$u \equiv \frac{U}{V} = \frac{\pi^2 k_B^4}{15\hbar^3 c^3} T^4$$
(2.9)

with $V = L^3$. The result that the radiant energy density is proportional to the fourth power of the temperature is known as the **Stefan-Boltzmann law** of radiation.

In applications we also would like to know the energy density spectrum resolved in frequency ω . To do this we simply invert the relation between ω_n and n into

$$n = \omega_n L / \pi c \quad \Rightarrow \quad dn = \frac{L}{\pi c} d\omega$$
 (2.10)

then the integral for U becomes

$$U = \pi \hbar \left(\frac{L}{\pi c}\right)^3 \int_0^\infty d\omega \, \frac{\omega^3}{\exp(\hbar\omega/k_B T) - 1} \tag{2.11}$$

so the energy per volume is

$$\frac{U}{V} = \frac{\hbar}{\pi^2 c^3} \int_0^\infty d\omega \frac{\omega^3}{\exp(\hbar\omega/k_B T) - 1}$$
(2.12)

hence the spectral density is

$$u(\omega) = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{\exp(\hbar\omega/k_B T) - 1}$$
(2.13)

3 Black body

The measurement of high temperatures depends on the flux of radiant energy from a small hole in the wall of a cavity maintained at the temperature of interest. Such a hole is said to radiate as a black body, which means that the radiation emission is characteristic of a thermal equilibrium distribution.

Define the energy flux J_U as the rate of energy per unit area, that is, the the amount of energy that passes through a unit area per unit time. Then we can straightforwardly write:

$$J_U = c \frac{U(T)}{V} \times (\text{geometrical factor})$$
(3.1)