Toric Code

Shi Feng

The Ohio State University

May 13, 2020

Introduction

The Toric code Hamiltonian:

$$
H_{T C}=-J_{1} \sum_{c} A_{s}-J_{2} \sum_{p} B_{p}
$$

where $A_{s}=\prod_{s} \sigma_{i}^{\times}, \quad B_{p}=\prod_{p} \sigma_{i}^{z}$

Ground state construnction

Hamiltonian is made of purely commuting terms

$$
\begin{aligned}
{\left[A_{s}, A_{s^{\prime}}\right] } & =0 \\
{\left[B_{p}, B_{p^{\prime}}\right] } & =0 \\
{\left[A_{s}, B_{p}\right] } & =0
\end{aligned}
$$

so that both plaquette and star operators commute with Hamiltonian:

$$
\left[A_{s}, H\right]=\left[B_{p}, H\right]=0
$$

A_{s} and B_{p} can be simultaneously diagonalized. Assuming $J>0$, the ground state is when all $B_{p}=1$ and $A_{s}=1$

The pictorial solution

Work in σ_{z} basis. The classical configuration: $s_{l}= \pm 1$. The ground state is some superposition of vortex-free configurations. We must have:

$$
B_{p}\left|\psi_{0}\right\rangle=\left|\psi_{0}\right\rangle \Rightarrow\left|\psi_{0}\right\rangle=\sum_{\text {v.f. }} c_{s}|s\rangle
$$

A_{s} is a good quantum number, which evaluates to +1 at g.s.

$$
A_{s}\left|\psi_{0}\right\rangle=\left|\psi_{0}\right\rangle
$$

This condition holds true if and only if all the c_{s} are equal for each orbit of the A_{s}

Gauge point of view

View A_{s} as a gauge transformation operator. Physical states must satisfy:

$$
A_{s}\left|\Psi_{0}\right\rangle=\left|\Psi_{0}\right\rangle
$$

Start with the trivial $\left|\Psi_{0}\right\rangle=\bigotimes_{\mid}\left|s_{l}=1\right\rangle$, which is not gauge invarient since apparently A_{s} will flip spins on 4 links thus $A_{s}\left|\Psi_{0}\right\rangle \neq\left|\Psi_{0}\right\rangle$. Such a local gauge transformation can be fixed by redefining our wavefunction:

$$
|\Psi\rangle=\left|\Psi_{0}\right\rangle+A_{s}\left|\Psi_{0}\right\rangle
$$

such that

$$
A_{s}|\Psi\rangle=A_{s}\left|\Psi_{0}\right\rangle+A_{s}^{2}\left|\Psi_{0}\right\rangle=A_{s}\left|\Psi_{0}\right\rangle+\left|\Psi_{0}\right\rangle
$$

Therefore the ground state is:

$$
|\Psi\rangle \propto \prod_{s}\left(1+A_{s}\right)\left|\Psi_{0}\right\rangle
$$

Essentially, we're superposing all gauge-equivalent wavefunction into one gauge-equivalent class.

Contractable loops

The prodect of σ^{z} eigenvalues of the links of any closed loop in the Gound state is always $1: \prod_{r \in\{\text { closed loop }\}} \sigma_{r}^{z}=1$

$$
\begin{aligned}
\sigma_{1}^{z} \sigma_{2}^{z} \sigma_{3}^{z} \sigma_{4}^{z} \sigma_{5}^{z} \sigma_{6}^{z} & =\left(\sigma_{1}^{z} \sigma_{2}^{z} \sigma_{7}^{z} \sigma_{6}^{z}\right)_{B}\left(\sigma_{3}^{z} \sigma_{4}^{z} \sigma_{5}^{z} \sigma_{7}^{z}\right)_{A} \\
& =B_{A} B_{B}=1
\end{aligned}
$$

where we have used $\sigma_{7}^{z} \sigma_{7}^{z}=1$

Degeneracy - non-contractable loops on \mathbb{T}^{2}

Define Wilson-loop operator:

$$
W_{\mathcal{C}}(s)=\prod_{l \in \mathcal{C}} s_{l}, \quad \mathcal{C}=\mathcal{C}_{1} \quad \text { or } \mathcal{C}_{2}
$$

This forms "superselection" sectors, i.e. $W_{\mathcal{C}}$ is unaffected by A_{s}.

$W_{\mathcal{C}_{1,2}}= \pm 1 \quad \Rightarrow \quad 4$-fold degenerate ground state.

TC limit - Numerical results

Entanglement Entropy

Scaling of entanglement in 2D Gapped system:

$$
S_{A} \sim \alpha L
$$

- the "Area law". L being perimeter of closed loop

Entanglement entropy: topologically ordered states

Additional term γ : Topological entanglement entropy

$$
S_{A} \sim \alpha L-\gamma
$$

$\gamma \neq 0$ indicates long-range entanglement structure that originates from the topological nature of the system.

$$
\gamma_{T C}=\log 2
$$

The entanglement entropy in a rectangular region

Figure 1: Degrees of freedoms live on links, the boundary of the rectangular area is labeled by h_{i}.

The ground state is $\{h\}$ - dependent:

$$
\left.\left.\left|\psi_{\left\{h_{i}\right\}}\right\rangle=\left|h_{1}, h_{2}, \ldots, h_{n}\right\rangle \otimes \mid \psi_{\left\{h_{i}\right\}}, \text { in }\right\rangle \otimes \mid \psi_{\left\{h_{i}\right\}}, \text { out }\right\rangle .
$$

(This is a product state of 3 sectors in the Schmidht basis)

Then the full ground state is:

$$
\left.\left.|\psi\rangle \propto \sum_{\left\{h_{i}\right\}}\left|\psi_{\left\{h_{i}\right\}}\right\rangle=\sum_{\left\{h_{i}\right\}}\left|h_{1}, \ldots, h_{n}\right\rangle \otimes \mid \psi_{\left\{h_{i}\right\}}, \text { in }\right\rangle \otimes \mid \psi_{\left\{h_{i}\right\}}, \text { out }\right\rangle .
$$

We apply this result to the rectangular partition of lattice:

$$
\prod_{r \in\{\mathrm{C} . \mathrm{L.} .\}} \sigma_{r}^{z}\left|h_{1}, \ldots, h_{n}\right\rangle=1 \text { or } h_{1} \times h_{2} \times \ldots \times h_{n}=1
$$

Therefore, the boundary sector $\left|h_{1}, \ldots, h_{n}\right\rangle$ has 2^{n-1} independent configurations.

The normalized ground state is then:

$$
\left.\left.\left.|\psi\rangle=\frac{1}{2^{(n-1) / 2}} \sum_{\left\{h_{i}\right\}}\left|h_{1}, \ldots h_{n}\right\rangle \right\rvert\, \psi_{\left\{h_{i}\right\}}, \text { in }\right\rangle \mid \psi_{\left\{h_{i}\right\}}, \text { out }\right\rangle .
$$

The density matrix is then:

$$
\begin{aligned}
\rho & =|\psi\rangle\langle\psi|=\sum_{\left\{h_{i}\right\}} \sum_{\left\{h_{i}^{\prime}\right\}}\left|\psi_{\left\{h_{i}\right\}}\right\rangle\left\langle\psi_{\left\{h_{i}^{\prime}\right\}}\right| \\
& \left.\left.\left.=\frac{1}{2^{n-1}} \sum_{\left\{h_{i}\right\}} \sum_{\left\{h_{i}^{\prime}\right\}}\left(\left|h_{1} \ldots h_{n}\right\rangle \mid \psi_{\left\{h_{i}\right\}}, \text { in }\right\rangle \right\rvert\, \psi_{\left\{h_{i}\right\}}, \text { out }\right\rangle\right)\left(\text { h.c. }^{\prime}\right)
\end{aligned}
$$

Trace out out sector:

$$
\rho_{i n}=\frac{1}{2^{n-1}}\left|h_{1} \ldots h_{n}\right\rangle\left|\psi_{\left\{h_{i}\right\}}, i n\right\rangle\left\langle h_{1} \ldots h_{n}\right|\left\langle\psi_{\left\{h_{i}\right\}}, i n\right|
$$

which is exactly $\mathbb{I}_{2^{n-1} \times 2^{n-1}}$

$$
\left.\left.\rho_{\text {in }}=\frac{1}{2^{n-1}}\left|h_{1} \ldots h_{n}\right\rangle \right\rvert\, \psi_{\left\{h_{i}\right\}}, \text { in }\right\rangle\left\langle h_{1} \ldots h_{n}\right|\left\langle\psi_{\left\{h_{i}\right\}}, \text { in }\right| \equiv \mathbb{I}_{2^{n-1} \times 2^{n-1}} .
$$

Therefore the entanglement entropy is:

$$
S_{E E}=-\operatorname{tr}\left[\rho_{i n} \log \rho_{i n}\right]=(n-1) \log 2=n \log 2-\log 2
$$

where the first term $n \log 2$ The same result can be dereived from

PK construction:

$$
S_{t o p o}=S_{A}+S_{B}+S_{C}-S_{A B}-S_{B C}-S_{A C}+S_{A B C}=-\log 2
$$

Vac.

The Hamiltonian is:

$$
H_{T C}=-J_{1} \sum_{c} A_{s}-J_{2} \sum_{p} B_{p}
$$

where $A_{s}=\prod_{s} \sigma_{i}^{x}, \quad B_{p}=\prod_{p} \sigma_{i}^{z}$. Ground state is vortex-free:

Figure 2: Illustration of G.S. by classical configuration

Charge Excitation

Define electric-path operator:

$$
W_{\mathbb{C}}^{(e)}\left(s_{1}, s_{2}\right)=\prod_{l \in \mathbb{C}} \tau_{l}^{z}
$$

Figure 3:

$$
\left[W_{\mathbb{C}}^{(e)}, B_{p}\right]=0, \quad\left[W_{\mathbb{C}}^{(e)}, A_{s}\right]=?
$$

$W_{\mathbb{C}}^{(e)}$ commutes with most but not all star operators.
At the end points of electric path \mathbb{C}, which we label $A_{s_{1}}$ and $A_{s_{2}}$:

$$
\left\{W_{\mathbb{C}}^{(e)}, A_{s_{1 / 2}}\right\}=0 .
$$

Let it act on the ground state wavefunction, by gauge invariance:

$$
W_{\mathbb{C}}^{(e)}\left(s_{1}, s_{2}\right)\left|\psi_{0}\right\rangle=-A_{s_{1} / 2} W_{\mathbb{C}}^{(e)}\left(s_{1}, s_{2}\right)\left|\psi_{0}\right\rangle
$$

This flip the sign of local energy of A_{s}. So

$$
\left|\psi_{s_{1}, s_{2}}\right\rangle \equiv W_{\mathbb{C}}^{(e)}\left(s_{1}, s_{2}\right)\left|\psi_{0}\right\rangle \text { is an eigenstate with energy } 4 J_{e} \text {. }
$$

Magnetic Vortices

Define an magnetic path operator $W_{\mathbb{C}}^{(m)}\left(p_{1}, p_{2}\right)$:

$$
W_{\mathbb{C}}^{(m)}\left(p_{1}, p_{2}\right)=\prod_{l \in \mathbb{C}} \tau_{l}^{x}
$$

where p_{1} and p_{2} are labels of plaquettes, and path \mathbb{C} is path on dual lattice (centers of the meshgrid). $I \in \mathcal{C}$ if they cut cross.

$$
\left[W_{\mathbb{C}}^{(m)}, A_{s}\right]=0, \quad\left[W_{\mathbb{C}}^{(m)}, B_{p}\right]=?
$$

All but two plaquette operators $B_{p_{1}}$ and $B_{p_{2}}$ at the ends of path \mathbb{C} commute with $W_{\mathbb{C}}^{(m)}$.

$$
\left\{W_{\mathbb{C}}^{(m)}\left(p_{1}, p_{2}\right), B_{p_{1 / 2}}\right\}=0
$$

Similary to the charge excitation:

$$
B_{p_{1}}\left|\Psi_{p_{1}, p_{2}}\right\rangle=-\left|\Psi_{p_{1}, p_{2}}\right\rangle
$$

'magnetic fluxes' (m-particles) at the plaquettes p_{1} and p_{2}, each costs $2 J_{m}$ to create.

Mutual Statistics

Take a charge e around a vortex m. Let $|\xi\rangle$ be a state contatining a magnetic vortex at p_{1}. Let \mathbb{C} be a closed loop around p_{1}, then the braiding operation is defined as:

$$
\left(\prod_{l \in \mathbb{C}} \tau_{I}^{z}\right)|\xi\rangle=\left(\prod_{p \in \mathcal{A}_{\mathbb{C}}} B_{p}\right)|\xi\rangle
$$

R.H.S is the lattice-version of Stokes' theorem

We have shown that m-particle flips sign of $B_{p_{1}}$, so that:

$$
B_{p_{1}}|\xi\rangle=-|\xi\rangle \quad \Rightarrow \quad\left(\prod_{p \in \mathcal{A}_{\mathbb{C}}} B_{p}\right)|\xi\rangle=-|\xi\rangle
$$

upon braiding e around m, wavefunction changes by $|\xi\rangle \rightarrow-|\xi\rangle$, i.e. we pick up a phase of π. This gives the fusion rule:

*exchange twice is topologically equivalent to braiding around.

Fusion Rule

$$
e \times e=1, \quad m \times m=1, \quad \text { }=1, \quad m=f
$$

