Exact Solution of Quantum Spin Liquids in Kitaev's Honeycomb Model

Shi Feng

Department of Physics, The Ohio State University

Feng, Shi (Dept. Phys.)

Kitaev Honeycomb

June 2, 2022 1 / 43

2 Spin-Majorana Transformation

Feng, Shi (Dept. Phys.)

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ June 2, 2022 2/43

イロト 不得 トイヨト イヨト

Phases of matter

June 2, 2022 3 / 43

- 32

Landau's symmetry breaking theory

Ordered states spontaneously break the symmetry

Beyond the Landau paradigm: Quantum Spin Liquids

The Negative definition:

Absence of magnetic order of a system with interacting spins even at $T \rightarrow 0$.

Geometrical Frustration

antiferromagnet e.g. $H = \sum S_i S_j$

Geometrically frustrated magnet

Honeycomb model

We follow the description in (Kitaev, 2006; Pachos, 2007)

Spin $\frac{1}{2}$ on each site, coupled to nearest neighbor by anisotropic spin-spin interaction.

$$H = -\sum_{\alpha} \sum_{\langle jk \rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}$$

June 2, 2022 6/43

$$\mathcal{H} = -\sum_{lpha} \sum_{\langle jk
angle_{lpha}} \mathcal{K}_{lpha} \sigma_j^{lpha} \sigma_k^{lpha}$$

It has exact QSL solution

- **Q** 2 types of Majorana fermions excitations:
 - Vortex (Z_2 flux) W_p
 - itinerant Majorana fermion c

- e Hamiltonian is diagonal in Majorana c
- Output State St

A (10) < A (10) < A (10) </p>

What do I mean by Exact Solution?

Example 1: 1D harmonic oscillator:

 Analytic method: Solve the PDE, find wavefunction ψ_n(x) and eigen value E_n

$$\begin{cases} \psi_n(x) \propto e^{-x^2} H_n(x) \\ E_n = \hbar \omega (n + \frac{1}{2}) \end{cases}$$

Algebric method: Define dimensionless operator (boson or fermion):

$$a=rac{1}{\sqrt{2}}(\hat{q}+i\hat{
ho}),~~\hat{a}^{\dagger}=rac{1}{\sqrt{2}}(\hat{q}-i\hat{
ho})$$

$$H = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) = \hbar\omega(\hat{n} + \frac{1}{2})$$

June 2, 2022 8 / 43

A many-body Example: Phonons.

$$H_{ph} = \sum_{j} \frac{\hat{p}_{j}^{2}}{2m} + \frac{m\omega^{2}}{2} (\hat{x}_{j} - \hat{x}_{j+1})^{2}$$

$$\downarrow$$

$$H_{ph} = \sum_{k} \underbrace{\hbar\omega(k)}_{\text{Energy, Band, #k-phonons}} (\underbrace{\hat{N}_{k}}_{\text{H-phonons}} + \frac{1}{2}).$$

Energy Band #k-phonons

・ロト ・ 同 ト ・ ヨ ト

э 9/43 June 2, 2022

Recap

Harmonic Oscillator

Lattice Vibration

0.0

-π/a

Localized boson, no band.

x = 0

Phonon modes with band

0

π/a

Feng, Shi (Dept. Phys.)

Kitaev Honeycomb

▶ < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < □ < ○ < ○ June 2, 2022 10 / 43 Lattice Vibration

Recap

Localized boson, no band.

 $H_{ph} = \sum \hbar \omega(k) (\hat{N}_k + rac{1}{2}).$ 1.00.5 0.0 0 -π/a π/a Phonon modes with band Kitaev Honevcomb

 $H_{ph} = \sum_j \hat{p}_j^2 + \omega^2 (\hat{x}_j - \hat{x}_{j+1})^2$

Kitaev Model

$$H = -\sum_{\alpha} \sum_{\langle jk \rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}$$
$$??? \downarrow ???$$
$$H = \sum_{k} \hbar \omega(k) (\hat{N}_{k} + const)$$

• What is the elementary excitation counted by \hat{N}_{μ}

2 What is the band structure $\omega(k)$

Feng, Shi (Dept. Phys.)

June 2, 2022 10/43

Overview of fractionalization

 $H = -\sum_{\alpha} \sum_{\langle jk \rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}$ $??? \downarrow ???$ $H = \sum_{k} \hbar \omega(k) (\hat{N}_{k} + const)$

What is the elementary excitation counted by N_k

 What is the band structure ω(k)

$$H = -\sum_{\alpha} \sum_{\langle jk \rangle_{\alpha}} f(\text{fractions of } \sigma)$$
$$H = \sum_{k} \stackrel{\checkmark}{\hbar \omega(k)} \hat{N}_{k}$$

- I fractions are Majoranas
- \$\heta_k\$ counts \$#\$ Majorana modes
- $\omega(k)$ gives Majorana bands

... and how to cut

- More degrees of freedom to manipulate (cut 1 into 4)
- It must preserve the number of distinguishable states (map Qubit to Qubit)
- It must preserve the SU(2) algebra of spins $[\sigma^{lpha},\sigma^{eta}]=2i\epsilon_{lphaeta\gamma}\sigma^{\gamma}$

Spin-1/2 into Fermionic modes (Cut into halves)

To cut into quarters, first cut into halves:

1 Fermion has 2 states:

- \bullet Occupied $|1\rangle$
- \bullet Unoccupied $|0\rangle$

Define:

$$\left|\uparrow
ight
angle\equiv\left|00
ight
angle,\ \left|\downarrow
ight
angle\equiv\left|11
ight
angle$$

Spin-1/2 Fermionic modes $a_1 \quad a_2$ $\bigcirc \quad \bigcirc \quad \bigcirc$

- 4 回 ト 4 回 ト 4 回

Spin-1/2 into Fermionic modes

To cut into quarters, first cut into halves:

- 1 Fermion has 2 states:
 - \bullet Occupied $|1\rangle$
 - \bullet Unoccupied $|0\rangle$
- Define:

$$\left|\uparrow
ight
angle\equiv\left|00
ight
angle,\ \left|\downarrow
ight
angle\equiv\left|11
ight
angle$$

э

Represent **a** spin-1/2 particle \hat{S} into **two** fermionic modes a_1, a_2 .

$$egin{aligned} &a_1^\dagger \ket{0}_1 = \ket{1}_1\,, \;\; a_1\ket{0}_2 = 0 \ &a_2^\dagger \ket{0}_2 = \ket{1}_2\,, \;\; a_2\ket{0}_2 = 0. \end{aligned}$$

Spin-up (down) have both fermionic modes occupied (empty):

$$\left|\uparrow
ight
angle=\left|00
ight
angle,\;\;\left|\downarrow
ight
angle=\left|11
ight
angle.$$

which satisfies

$$|11
angle = a_{1}^{\dagger}a_{2}^{\dagger}\left|00
ight
angle \,,\;\; a_{1(2)}\left|00
ight
angle = 0.$$

< ロ > < 同 > < 回 > < 回 >

Represent **a** spin-1/2 particle \hat{S} into **two** fermionic modes a_1 , a_2 .

$$egin{array}{l} a_1^{\dagger} \left| 0
ight
angle_1 = \left| 1
ight
angle_1 \,, \ \ a_1 \left| 0
ight
angle_2 = 0 \ \ a_2^{\dagger} \left| 0
ight
angle_2 = \left| 1
ight
angle_2 \,, \ \ a_2 \left| 0
ight
angle_2 = 0. \end{array}$$

Spin-up (down) have both fermionic modes occupied (empty):

$$\left|\uparrow
ight
angle=\left|00
ight
angle,\;\;\left|\downarrow
ight
angle=\left|11
ight
angle.$$

which satisfies

$$\left|11
ight
angle=a_{1}^{\dagger}a_{2}^{\dagger}\left|00
ight
angle, \;\;a_{1(2)}\left|00
ight
angle=0.$$

Redundancy!

- Hilbert space size of $\hat{S} = 2$
- . . . of fermionic modes $= 2^2 = 4$
- \Rightarrow We have to **project out** two dofs: $|10
 angle\,, |01
 angle$

ヘロト 人間 ト ヘヨト ヘヨト

Let $a_{1,i}$, $a_{2,i}$ be the 1st and 2nd fermionic mode operator of the spin at site *i*. The projection can be achieved by a local constraint (gauge) operator D_i :

$$D_i = (1 - 2a_{1,i}^{\dagger}a_{1,i})(1 - 2a_{2,i}^{\dagger}a_{2,i}) = (1 - 2n_{1,i})(1 - 2n_{2,i})$$

where $n_{1,i}$, $n_{2,i}$ are occupation number operators of the two fermion dofs at site *i*. Check:

$$egin{aligned} D_i \ket{11} &= (1-2)(1-2) = 1, \ \ D_i \ket{00} &= (1-0)(1-0) = 1. \ \ D_i \ket{10} &= (1-2)(1-0) = -1, \ \ D_i \ket{01} &= (1-0)(1-2) = -1. \end{aligned}$$

Therefore the physical space is recovered by

$$D_i \ket{\Psi} = \ket{\Psi}$$
 .

while $D_i |\Psi\rangle = - |\Psi\rangle$ is the redundant dofs in the extended Hilbert space. (to be Gauged out)

June 2, 2022 16 / 43

∃ <\0<</p>

Redundancy

- # spin states $\hat{\sigma} = 2$
- # fermionic modes = $2^2 = 4$
- \Rightarrow We have to **project out** two dofs: $|10\rangle$, $|01\rangle$

The constraint (gauge) operator
$$D$$
 is defined:

$$D \ket{00} = + \ket{00}, \ \ D \ket{11} = + \ket{11}$$

$$egin{array}{ll} D \ket{10} = - \ket{10}, & D \ket{01} = - \ket{01} \end{array}$$

This can be achieved by

$$D = (1 - 2n_1)(1 - 2n_2).$$

 n_i : occupation number (0 or 1) of *i* fermions.

• • • • • • • •

Projection of many-body state:

$$\left|\psi
ight
angle = \prod_{j} \left(rac{1+D_{i}}{2}
ight) \left| ilde{\psi}
ight
angle.$$

 $\tilde{\psi}$ in extended Hilbert space $\tilde{\mathcal{L}}$ ψ in the physical subspace \mathcal{L}

Fermionic modes to Majorana modes (halves to quarters)

However, this fermionic representation is still not enough to tackle the Hamiltonian. We need "Sharper resolution" – **Majorana modes**

What is Majorana?

Majorana: no anti-particle

Majorana's anti-particle is itself

creation operator γ^{\dagger}

&

annilihation operator γ

are the same

$$\gamma=\gamma^\dagger$$

Simplest way to make $\gamma^{\dagger} = \gamma$: Taking "*real*" and "*imaginary*" parts:

$$c = a_1 + a_1^{\dagger}, \ b^x = i(a_1^{\dagger} - a_1), \ b^y = a_2 + a_2^{\dagger}, \ b^z = i(a_2^{\dagger} - a_2)$$

3

$$c_i = a_{1,i} + a_{1,i}^{\dagger}, \ b_i^x = i(a_{1,i}^{\dagger} - a_{1,i}), \ b_i^y = a_{2,i} + a_{2,i}^{\dagger}, \ b_i^z = i(a_{2,i}^{\dagger} - a_{2,i})$$

Gauge operator from fermion basis into Majorana basis:

$$D = (1 - 2n_1)(1 - 2n_2) = b_i^x b_i^y b_i^z c_i$$

Feng, Shi (Dept. Phys.)

Kitaev Honeycomb

June 2, 2022 22 / 43

- ∢ ⊒ ▶

э

What we have done:

- $\checkmark {\sf More}\ {\sf degrees}\ {\sf of}\ {\sf freedom}$
- ✓ Preserve the number of distinguishable states
- \times Preserve the SU(2) algebra of spins

What we have done:

- \checkmark More degrees of freedom
- ✓ Preserve the number of distinguishable states
- \times Preserve the SU(2) algebra of spins

 $\tilde{\sigma}_{j}^{\alpha} = i b_{j}^{\alpha} c_{j}$ for $\alpha = x, y, z$

Recap

• We have mapped a single spin-1/2 particle into 2 fermionic modes, then to 4 Majorana modes:

- We have found the gauge operator $D_i = b_i^x b_j^y b_i^z c_i$ which projects the extended Hilbert space $\tilde{\mathcal{L}}$ into the physical subspace \mathcal{L} .
- It is a faithful representation because (i) we can use D_i to recover the correct Hilbert space, and (ii) when restrict to \mathcal{L} Majoranas satisfy spin-1/2's SU(2) algebra.

イロト 不得下 イヨト イヨト

A Rudimentary Scheme for Wavefunction

• Rewrite the Hamiltonian in spin basis into the Majorana basis in $\tilde{\mathcal{L}}$:

- Find a wavefunction of Hamiltonian in $\tilde{\mathcal{L}}$
- Obtain the physical subspace by projection

$$\ket{\Psi} = \prod_{j} \left(rac{1+D_{j}}{2}
ight) \left| ilde{\Psi}
ight
angle \in \mathcal{L}.$$

... for Dispersion of Excitations

• Rewrite the Hamiltonian in spin basis into the Majorana basis in $\tilde{\mathcal{L}}$:

- Simplify into some quadratic Hamiltonian of hopping Majoranas
- Diagonalize using Fourier tranformation to get something like

$$H(k) \sim \sum_{k} \omega(k) c_{k}^{\dagger} c_{k} = \sum_{k} \omega(k) n_{k}.$$

the dispersion of c_k^{\dagger} modes are given by $\omega(k)$. (Wavefunction solution is dispensable)

Why Majoranas? - Conserved Quantities

An observable \hat{O} is conserved if $[\hat{O}, H] = 0$, each eigen value of \hat{O} labels a subspace.

For an arbitrary Hamiltonian $\hat{H} = f(\hat{O}, \hat{A}, \hat{B}, ...)$

Feng, Shi (Dept. Phys.)

Extensive # conserved quantities in Majorana representation

Link Operators (vector potential) and Plaquette operators (flux)

$$[\hat{u}_{ij}, H] = 0$$

 $[ilde{\mathcal{W}}_{\mathcal{P}}, H] = 0$
 \downarrow
Extensive $\#$ of conserved quantites

 $\{W_p\}$ and $\{u_{ij}\}$

Kitaev Honeycomb

Link Operators

The Hamiltonian in $\tilde{\mathcal{L}}$ using Majorana fermions:

link operator: $\hat{u}_{ij} = i b_i^{\alpha} b_i^{\alpha}$

•
$$\hat{u}_{ij}$$
 is conserved: $[\hat{u}_{jk}, H] = 0$.

• $\hat{u}_{ik}^2 = 1$, hence its eigen values are ± 1 .

$$\tilde{\mathcal{L}} = \bigoplus_{\{u_{jk}\}} \tilde{\mathcal{L}}_{\{u_{jk}=\pm 1\}}$$

$$[\hat{u}_{ij}, \hat{H}] = 0$$

$\hat{H}(\{u_{ij}\}^{(1)}, c)$	$\hat{H}(\{u_{ij}\}^{(2)},c)$	
$\hat{H}(\{u_{ij}\}^{(3)},c)$	$\hat{H}(\{u_{ij}\}^{(4)},c)$	

 $\{u_{ij}=\pm 1\}$

Feng, Shi (Dept. Phys.)

Kitaev Honeycomb

June 2, 2022 30 / 43

996

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣・

Diagonalization

With u_{jk} being static numbers, the Hamiltonian becomes quadratic of c_i Majoranas:

$$H = \sum_{\langle ij \rangle_{\alpha}} (iK_{\alpha} \hat{u}_{ij}) c_i c_j \quad \Rightarrow \quad H = \sum_{\langle ij \rangle_{\alpha}} (iK_{\alpha} u_{ij}) c_i c_j$$

 $\{u_{ij} = \pm 1\}$ ~ vector potential in $\tilde{\mathcal{L}}$

Two things are Missing:

- Project the extended $\tilde{\mathcal{L}}$ into \mathcal{L}
- What to assign to $\{u_{jk}\}$ for ground state?

Plaquette Operators: $\tilde{W}_p = \tilde{\sigma}_1^x \tilde{\sigma}_2^y \tilde{\sigma}_3^z \tilde{\sigma}_4^x \tilde{\sigma}_5^y \tilde{\sigma}_6^z$

- \tilde{W}_p is conserved: $[\tilde{W}_p, H] = 0$
- $ilde{W}_{p}$ and \hat{u}_{jk} are simultaneouly diagonalizable: $[ilde{W}_{p}, \hat{u}_{jk}] = 0$

Represent spins by Majoranas $\tilde{\sigma}^{\alpha} = ib^{\alpha}c$, and restrict to \mathcal{L} by enforcing $D_i = 1$:

Kitaev Honevcomb

$$\begin{split} \hat{\mathcal{W}}_{p} &= (ib_{1}^{x}c_{1})(ib_{2}^{y}c_{2})(ib_{3}^{z}c_{3})(ib_{4}^{x}c_{4})(ib_{5}^{y}c_{5})(ib_{6}^{z}c_{6}) \\ &= (ib_{2}^{z}b_{1}^{z})(ib_{2}^{x}b_{3}^{x})(ib_{4}^{y}b_{3}^{y})(ib_{4}^{z}b_{5}^{z})(ib_{6}^{x}b_{5}^{z})(ib_{6}^{z}b_{1}^{z}) \\ &= \hat{u}_{21}\hat{u}_{23}\hat{u}_{43}\hat{u}_{45}\hat{u}_{65}\hat{u}_{61} \end{split}$$

that is, when restricted to \mathcal{L} , \tilde{W}_{p} becomes:

$$\hat{W}_p = \prod_{\langle jk
angle \in \partial_p} \hat{u}_{jk}$$

Diagonalization

- \tilde{W}_{p} is conserved: $[\tilde{W}_{p}, H] = 0$
- \tilde{W}_{p} and \hat{u}_{jk} are simultaneouly diagonalizable: $[\tilde{W}_{p}, \hat{u}_{jk}] = 0$

$$\hat{W}_{p} = \prod_{\langle jk \rangle \in \partial_{p}} \hat{u}_{jk} \quad \Rightarrow \quad W_{p} = \prod_{\langle jk \rangle \in \partial_{p}} u_{jk} \quad \text{if restricted in } \mathcal{L}$$

 $u_{jk} = \pm 1 \Rightarrow W_p = \pm 1$. So the physical \mathcal{L} can be decomposed into sectors of $\{W_p\}$:

- $W_p = -1$ is a vortex (flux)
- Physical wavefunction is determined by vortex configuration {w_p}.
- A fixed vortex configuration can have many different {*u_{jk}*} configurations.

Take-Aways

• In \mathcal{L} , there are two types of conserved quantities (integrals of motion):

$$\mathsf{Plaquette} \,\, \hat{\mathcal{W}}_{p} = \sum_{\langle jk \rangle \in \partial_{p}} \hat{u}_{jk}, \quad \mathsf{and} \,\, \mathsf{Link} \,\, \hat{u}_{jk} = i b_{j}^{\alpha} b_{k}^{\alpha}.$$

- Both eigen values of W_p and u_{jk} are ± 1 .
- Wavefunction in $\tilde{\mathcal{L}}$ is given by link configuration $\{u_{jk}\}$.
- Physical wavefunction is determined by fixing up the vortices $\{W_p = \prod_{\partial_p} u_{jk}\}$.
- Vortex is also (localized) Majorana:

N spins
$$\uparrow \downarrow \iff N/2$$
 plaquettes ± 1 .

Hilbert space size
$$=\frac{2^N}{2^{N/2}}=2^{N/2}$$
 \Rightarrow $dim(W_p)=\sqrt{2}.$

Diagonalize the Ground State Hamiltonian

Recall that we wanted to diagonalize H represented by sectors of $\{u_{jk}\}$ in $\tilde{\mathcal{L}}$:

$$H = \sum_{\alpha} \sum_{\langle jk \rangle_{\alpha}} (iK_{\alpha}u_{jk})c_ic_j.$$

Now the redundant dofs can be projected out by simply fixing a $\{w_p\}$ sector.

Theorem

Lieb (1994): Ground state has no vortices $\iff \{w_p = +1\}.$

Therefore we can choose the simplist configuration $\{u_{jk} = +1\}$:

$$\{u_{jk} = +1\} \Rightarrow H = \sum_{\alpha} \sum_{\langle jk \rangle_{\alpha}} iK_{\alpha}c_{j}c_{k}$$

$$H = \sum_lpha \sum_{\langle jk
angle_lpha} oldsymbol{K}_lpha c_j c_k \;\; \Rightarrow \;\; {\sf Q}$$
uadratic Hamiltonian of itinerant Majoranas

Go to momentum space by Fourier transformation:

$$c_{j} = rac{1}{\sqrt{N/2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r_{j}}} a_{\vec{k}}, \quad c_{k} = rac{1}{\sqrt{N/2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r_{k}}} b_{\vec{k}}.$$

Kitaev Honeycomb

The Hamiltonian is then block-diagonal:

$$H = \sum_{\vec{k}} \Psi_{\vec{k}}^{\dagger} \hat{h}_{\vec{k}} \Psi_{\vec{k}}, \quad \text{with } \Psi_{\vec{k}} = \begin{pmatrix} a_{\vec{k}} \\ b_{\vec{k}} \end{pmatrix} \text{ and } \hat{h}_{\vec{k}} = \frac{1}{2} \begin{pmatrix} 0 & if(\vec{k}) \\ -if^*(\vec{k}) & 0 \end{pmatrix}$$

where
$$f(\vec{k}) = i(K_z + K_y e^{-i\vec{k}\cdot\vec{a}_2} + K_x e^{-i\vec{k}\cdot\vec{a}_1})$$

Bands are given by

$$\left|\epsilon(ec{k})=\pmrac{1}{2}\Big|f(ec{k})\Big|
ight.$$

נוֹא ל ≣ א ≣ יי א פּ June 2, 2022 37 / 43

イロト 不得 トイヨト イヨト

Single particle spectrum

Majorana Bands:

$$\epsilon(ec{k}) = \pm rac{1}{2} \left| f(ec{k}) \right|$$

For $K_{\alpha} = C$ it's identical to TB Graphene:

For generic coupling K_{α} :

Dynamical structure factor $S(k, \omega)$

Graphene

Kitaev

Summary

• The Honeycomb model has exact solution.

$$H = -K_x \sum_{\langle jk \rangle_x} \sigma_j^x \sigma_k^x - K_y \sum_{\langle jk \rangle_y} \sigma_j^y \sigma_k^y - K_z \sum_{\langle jk \rangle_z} \sigma_j^z \sigma_k^z$$

- It is solved by fractionalizing 1 spin-1/2 to 4 Majoranas with a gauge operator D_i . This representation has extensive number of conserved quantities.
- There are two kinds of elementary Majorana excitations:

Localized W_p and itinerant c_j

- The ground state equivalent to a quadratic Hamiltonain with itinerant Majorana $c_j c_k$.
- Gapped phase and Gapless phase.

Backup Slides

(日)、(日)、(日)、(日)、(日)

Experimental probe

Two temperature scales:

- T_c at which magnetic order begins to develop
- Phenomenological Curie–Weiss temperature Θ_{CW} , at which magnetic susceptibility χ diverges

$$\chi \sim \frac{C}{T - \Theta_{CW}}$$

۲

The Phenomenological frustration parameter:

$$f = \Theta_{CW}/T_c.$$

No order $\Rightarrow f \rightarrow \infty$. A large value f > 100 is a good indication of possible QSL.

イロト 不得下 イヨト イヨト

Why Majoranas? - Conserved Quantities

- A physical observable Ô is conserved if [Ô, H] = 0, its eigen value is then termed a good quantum number.
- It allows us to split the Hamiltonian into different quantum sectors labeled by these quantum numbers, thus reduce the dynamical dofs in the problem.
- Extensive number of conserved quantities indicates possible exact solutions.
- Majorana representation of the Hamiltonian has two sets of conserved quantities:

Link operators $\{u_{jk}\}$ and Plaquette operators $\{W_p\}$.