Exact Solution of Quantum Spin Liquids in Kitaev's Honeycomb Model

Shi Feng
Department of Physics, The Ohio State University

Table of Contents

(1) Introduction
(2) Spin-Majorana Transformation
(3) Diagonalization

Phases of matter

Landau's symmetry breaking theory

Ordered states spontaneously break the symmetry
(a)

(b)

(b)

(a)
(b)

Beyond the Landau paradigm: Quantum Spin Liquids

The Negative definition:
Absence of magnetic order of a system with interacting spins even at $T \rightarrow 0$.

Geometrical Frustration

antiferromagnet e.g. $H=\sum S_{i} S_{j}$
Geometrically frustrated magnet

Honeycomb model

We follow the description in (Kitaev, 2006; Pachos, 2007)

Two sublattices
Three types of links

Spin $\frac{1}{2}$ on each site, coupled to nearest neighbor by anisotropic spin-spin interaction.

$$
H=-K_{x} \sum_{\langle j k\rangle_{x}} \sigma_{j}^{x} \sigma_{k}^{x}-K_{y} \sum_{\langle j k\rangle_{y}} \sigma_{j}^{y} \sigma_{k}^{y}-K_{z} \sum_{\langle j k\rangle_{z}} \sigma_{j}^{z} \sigma_{k}^{z}
$$

$$
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}
$$

$$
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}
$$

It has exact QSL solution
(1) 2 types of Majorana fermions excitations:

- Vortex (Z_{2} flux) W_{p}
- itinerant Majorana fermion c
(2) Hamiltonian is diagonal in Majorana c
(3) Low energy Majorana bands

What do I mean by Exact Solution?

Example 1: 1D harmonic oscillator:

$$
H_{h o}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} .
$$

(1) Analytic method: Solve the PDE, find wavefunction $\psi_{n}(x)$ and eigen value E_{n}

$$
\left\{\begin{array}{l}
\psi_{n}(x) \propto e^{-x^{2}} H_{n}(x) \\
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
\end{array}\right.
$$

(2) Algebric method: Define dimensionless operator (boson or fermion):

$$
\begin{gathered}
a=\frac{1}{\sqrt{2}}(\hat{q}+i \hat{p}), \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{q}-i \hat{p}) \\
H=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)=\hbar \omega\left(\hat{n}+\frac{1}{2}\right)
\end{gathered}
$$

A many-body Example: Phonons.

$$
\begin{gathered}
H_{p h}=\sum_{j} \frac{\hat{p}_{j}^{2}}{2 m}+\frac{m \omega^{2}}{2}\left(\hat{x}_{j}-\hat{x}_{j+1}\right)^{2} \\
\downarrow \\
H_{p h}=\sum_{k} \underbrace{\hbar \omega(k)}_{\text {Energy Band }}(\underbrace{\hat{N}_{k}}_{\# \mathrm{k} \text {-phonons }}+\frac{1}{2}) .
\end{gathered}
$$

Recap

Harmonic Oscillator

$$
H_{h o}=\hat{p}^{2}+\omega^{2} \hat{x}^{2}
$$

$$
H_{h o}=\hbar \omega\left(\hat{n}+\frac{1}{2}\right) .
$$

Localized boson, no band.

Lattice Vibration

$$
\begin{gathered}
H_{p h}=\sum_{j} \hat{p}_{j}^{2}+\omega^{2}\left(\hat{x}_{j}-\hat{x}_{j+1}\right)^{2} \\
\downarrow \\
H_{p h}=\sum_{k} \hbar \omega(k)\left(\hat{N}_{k}+\frac{1}{2}\right) .
\end{gathered}
$$

Phonon modes with band

Recap

Harmonic Oscillator

$$
\begin{gathered}
H_{h o}=\hat{p}^{2}+\omega^{2} \hat{x}^{2} \\
\downarrow \\
\\
H_{h o}=\hbar \omega\left(\hat{n}+\frac{1}{2}\right) .
\end{gathered}
$$

Localized boson, no band.

Lattice Vibration

$$
\begin{gathered}
H_{p h}=\sum_{j} \hat{p}_{j}^{2}+\omega^{2}\left(\hat{x}_{j}-\hat{x}_{j+1}\right)^{2} \\
\downarrow \\
H_{p h}=\sum_{k} \hbar \omega(k)\left(\hat{N}_{k}+\frac{1}{2}\right) .
\end{gathered}
$$

Phonon modes with band

Kitaev Model

$$
\begin{gathered}
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha} \\
? ? ? ? \downarrow ? ? ? \\
H=\sum_{k} \hbar \omega(k)\left(\hat{N}_{k}+\text { const }\right)
\end{gathered}
$$

(1) What is the elementary excitation counted by \hat{N}_{k}
(2) What is the band structure $\omega(k)$

Overview of fractionalization

$$
\begin{array}{ll}
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha} & H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} f(\text { fractions of } \sigma) \\
H=\sum_{k} \hbar \omega ? \downarrow ? ? ? & H=\sum_{k} \hbar \omega(k) \hat{N}_{k} \\
\begin{array}{ll}
\text { (1) What is the elementary } \left.\hat{N}_{k}+\text { const }\right) & \text { (1) fractions are Majoranas } \\
\text { excitation counted by } \hat{N}_{k} & \text { (2) } \hat{N}_{k} \text { counts \# Majorana } \\
\text { (2) What is the band } & \text { (3) } \omega(k) \text { gives Majorana bands } \\
\text { structure } \omega(k) & \text { Majoranas }
\end{array}
\end{array}
$$

... and how to cut

- More degrees of freedom to manipulate (cut 1 into 4)
- It must preserve the number of distinguishable states (map Qubit to Qubit)
- It must preserve the $\mathrm{SU}(2)$ algebra of spins $\left[\sigma^{\alpha}, \sigma^{\beta}\right]=2 i \epsilon_{\alpha \beta \gamma} \sigma^{\gamma}$

Spin-1/2 into Fermionic modes (Cut into halves)

To cut into quarters, first cut into halves:

Spin-1/2	Fermionic mo	
particle	a_{1}	a_{2}
$\boldsymbol{\gamma}$	\bigcirc	\bigcirc

Spin-1/2

Fermionic modes

$a_{1} \quad a_{2}$
$\hat{\imath}$

1 Fermion has 2 states:

- Occupied $|1\rangle$
- Unoccupied $|0\rangle$

Define:

$$
|\uparrow\rangle \equiv|00\rangle, \quad|\downarrow\rangle \equiv|11\rangle
$$

Spin-1/2 into Fermionic modes

To cut into quarters, first cut into halves:

Spin- $1 / 2$	Fermionic mo	
particle	a_{1}	a_{2}
$\boldsymbol{\jmath}$	\bigcirc	\bigcirc

1 Fermion has 2 states:

- Occupied $|1\rangle$
- Unoccupied $|0\rangle$

Define:

$$
|\uparrow\rangle \equiv|00\rangle, \quad|\downarrow\rangle \equiv|11\rangle
$$

Spin-1/2

$\hat{\imath}$

Fermionic modes

Represent a spin- $1 / 2$ particle \hat{S} into two fermionic modes a_{1}, a_{2}.

$$
\begin{array}{ll}
a_{1}^{\dagger}|0\rangle_{1}=|1\rangle_{1}, & a_{1}|0\rangle_{2}=0 \\
a_{2}^{\dagger}|0\rangle_{2}=|1\rangle_{2}, & a_{2}|0\rangle_{2}=0
\end{array}
$$

Spin-up (down) have both fermionic modes occupied (empty):

$$
|\uparrow\rangle=|00\rangle, \quad|\downarrow\rangle=|11\rangle .
$$

which satisfies

$$
|11\rangle=a_{1}^{\dagger} a_{2}^{\dagger}|00\rangle, \quad a_{1(2)}|00\rangle=0
$$

Represent a spin- $1 / 2$ particle \hat{S} into two fermionic modes a_{1}, a_{2}.

$$
\begin{array}{ll}
a_{1}^{\dagger}|0\rangle_{1}=|1\rangle_{1}, & a_{1}|0\rangle_{2}=0 \\
a_{2}^{\dagger}|0\rangle_{2}=|1\rangle_{2}, & a_{2}|0\rangle_{2}=0
\end{array}
$$

Spin-up (down) have both fermionic modes occupied (empty):

$$
|\uparrow\rangle=|00\rangle, \quad|\downarrow\rangle=|11\rangle .
$$

which satisfies

$$
|11\rangle=a_{1}^{\dagger} a_{2}^{\dagger}|00\rangle, \quad a_{1(2)}|00\rangle=0
$$

Redundancy!

- Hilbert space size of $\hat{S}=2$
- \ldots. of fermionic modes $=2^{2}=4$
\Rightarrow We have to project out two dofs: $|10\rangle,|01\rangle$

Let $a_{1, i}, \quad a_{2, i}$ be the 1 st and 2 nd fermionic mode operator of the spin at site i. The projection can be achieved by a local constraint (gauge) operator D_{i} :

$$
D_{i}=\left(1-2 a_{1, i}^{\dagger} a_{1, i}\right)\left(1-2 a_{2, i}^{\dagger} a_{2, i}\right)=\left(1-2 n_{1, i}\right)\left(1-2 n_{2, i}\right) .
$$

where $n_{1, i}, n_{2, i}$ are occupation number operators of the two fermion dofs at site i. Check:

$$
\begin{gathered}
D_{i}|11\rangle=(1-2)(1-2)=1, \quad D_{i}|00\rangle=(1-0)(1-0)=1 . \\
D_{i}|10\rangle=(1-2)(1-0)=-1, \quad D_{i}|01\rangle=(1-0)(1-2)=-1 .
\end{gathered}
$$

Therefore the physical space is recovered by

$$
D_{i}|\Psi\rangle=|\Psi\rangle .
$$

while $D_{i}|\Psi\rangle=-|\Psi\rangle$ is the redundant dofs in the extended Hilbert space. (to be Gauged out)

Redundancy

- \# spin states $\hat{\sigma}=2$
- \# fermionic modes $=2^{2}=4$
\Rightarrow We have to project out two dofs: $|10\rangle,|01\rangle$ The constraint (gauge) operator D is defined:

$$
D|00\rangle=+|00\rangle, \quad D|11\rangle=+|11\rangle
$$

Spin-1/2
particle
$\hat{\uparrow}$
Fermionic modes

$$
D|10\rangle=-|10\rangle, \quad D|01\rangle=-|01\rangle
$$

This can be achieved by

$$
D=\left(1-2 n_{1}\right)\left(1-2 n_{2}\right) .
$$

n_{i} : occupation number (0 or 1) of i fermions.

Projection of many-body state:

$$
|\psi\rangle=\prod_{j}\left(\frac{1+D_{i}}{2}\right)|\tilde{\psi}\rangle
$$

$\tilde{\psi}$ in extended Hilbert space $\tilde{\mathcal{L}}$
$D_{i}|\psi\rangle=+|\psi\rangle$
Physical
ψ in the physical subspace \mathcal{L}

Fermionic modes to Majorana modes (halves to quarters)

However, this fermionic representation is still not enough to tackle the Hamiltonian. We need "Sharper resolution" - Majorana modes

Spin-1/2	Fermionic modes	Majorana modes				
particle	a_{1}	a_{2}	c	b^{x}	b^{y}	b^{z}
$\boldsymbol{\jmath}$						

What is Majorana?

Majorana: no anti-particle

Majorana's anti-particle is itself

 creation operator γ^{\dagger} \& annilihation operator γ are the same$$
\gamma=\gamma^{\dagger}
$$

Simplest way to make $\gamma^{\dagger}=\gamma$: Taking " real" and "imaginary" parts:
Spin-1/2 Fermionic modes Majorana

$$
c=a_{1}+a_{1}^{\dagger}, \quad b^{x}=i\left(a_{1}^{\dagger}-a_{1}\right), \quad b^{y}=a_{2}+a_{2}^{\dagger}, \quad b^{z}=i\left(a_{2}^{\dagger}-a_{2}\right)
$$

$$
c_{i}=a_{1, i}+a_{1, i}^{\dagger}, \quad b_{i}^{x}=i\left(a_{1, i}^{\dagger}-a_{1, i}\right), \quad b_{i}^{y}=a_{2, i}+a_{2, i}^{\dagger}, \quad b_{i}^{z}=i\left(a_{2, i}^{\dagger}-a_{2, i}\right)
$$

Gauge operator from fermion basis into Majorana basis:

$$
D=\left(1-2 n_{1}\right)\left(1-2 n_{2}\right)=b_{i}^{x} b_{i}^{y} b_{i}^{z} c_{i}
$$

What we have done:

- \checkmark More degrees of freedom
- \checkmark Preserve the number of distinguishable states
- \times Preserve the $\operatorname{SU}(2)$ algebra of spins

What we have done:

- \checkmark More degrees of freedom
- \checkmark Preserve the number of distinguishable states
- \times Preserve the $\operatorname{SU}(2)$ algebra of spins

$$
\tilde{\sigma}_{j}^{\alpha}=i b_{j}^{\alpha} c_{j} \quad \text { for } \alpha=x, y, z
$$

Recap

- We have mapped a single spin- $1 / 2$ particle into 2 fermionic modes, then to 4 Majorana modes:

Spin-1/2	Fermionic modes	Majorana modes				
particle	a_{1}	a_{2}	c	b^{x}	b^{y}	b^{z}
$\boldsymbol{\jmath}$		O				

- We have found the gauge operator $D_{i}=b_{i}^{x} b_{i}^{y} b_{i}^{z} c_{i}$ which projects the extended Hilbert space $\tilde{\mathcal{L}}$ into the physical subspace \mathcal{L}.
- It is a faithful representation because (i) we can use D_{i} to recover the correct Hilbert space, and (ii) when restrict to \mathcal{L} Majoranas satisfy spin- $1 / 2$'s $S U(2)$ algebra.

A Rudimentary Scheme for Wavefunction

- Rewrite the Hamiltonian in spin basis into the Majorana basis in $\tilde{\mathcal{L}}$:

- Find a wavefunction of Hamiltonian in $\tilde{\mathcal{L}}$
- Obtain the physical subspace by projection

$$
|\Psi\rangle=\prod_{j}\left(\frac{1+D_{i}}{2}\right)|\tilde{\Psi}\rangle \in \mathcal{L}
$$

for Dispersion of Excitations

- Rewrite the Hamiltonian in spin basis into the Majorana basis in $\tilde{\mathcal{L}}$:

- Simplify into some quadratic Hamiltonian of hopping Majoranas
- Diagonalize using Fourier tranformation to get something like

$$
H(k) \sim \sum_{k} \omega(k) c_{k}^{\dagger} c_{k}=\sum_{k} \omega(k) n_{k} .
$$

the dispersion of c_{k}^{\dagger} modes are given by $\omega(k)$. (Wavefunction solution is dispensable)

Why Majoranas? - Conserved Quantities

An observable \hat{O} is conserved if $[\hat{O}, H]=0$, each eigen value of \hat{O} labels a subspace.

Hilbert Space of \hat{H}

$$
\hat{H}=f(\hat{O}, \hat{A}, \hat{B}, \ldots)
$$

$$
[\hat{O}, \hat{H}]=0
$$

$[\hat{A}, \hat{H}]=0$

$f\left(o_{1}, a_{1}, \hat{B}, \ldots\right)$	$f\left(o_{1}, a_{2}, \hat{B}, \ldots\right)$		
\ldots	$\left\|o_{1} a_{2}^{(1)}\right\rangle \ldots$	\ldots	
$f\left(o_{1}, a_{3}, \hat{B}, \ldots\right)$	$f\left(o_{1}, a_{4}, \hat{B}, \ldots\right)$		
\ldots.	\ldots		
\ldots		\ldots	

For an arbitrary Hamiltonian $\hat{H}=f(\hat{O}, \hat{A}, \hat{B}, \ldots)$

Extensive \# conserved quantities in Majorana representation Link Operators (vector potential) and Plaquette operators (flux)

$$
\begin{gathered}
{\left[\hat{u}_{i j}, H\right]=0} \\
{\left[\tilde{W}_{p}, H\right]=0} \\
\downarrow
\end{gathered}
$$

Extensive \# of conserved quantites $\left\{W_{p}\right\}$ and $\left\{u_{i j}\right\}$

Link Operators

The Hamiltonian in $\tilde{\mathcal{L}}$ using Majorana fermions:

$$
\tilde{H}=-\sum_{\langle i j\rangle_{\alpha}} K_{\alpha} \tilde{\sigma}_{i}^{\alpha} \tilde{\sigma}_{j}^{\alpha}=i \sum_{\langle i j\rangle_{\alpha}}\left[K_{\alpha}\left(i b_{i}^{\alpha} b_{j}^{\alpha}\right)\right] c_{i} c_{j} \equiv i \sum_{\langle i j\rangle_{\alpha}} K_{\alpha} \hat{u}_{i j} c_{i} c_{j} .
$$

link operator: $\hat{u}_{i j}=i b_{i}^{\alpha} b_{j}^{\alpha}$

- $\hat{u}_{i j}$ is conserved: $\left[\hat{u}_{j k}, H\right]=0$.
- $\hat{u}_{j k}^{2}=1$, hence its eigen values are ± 1.
$\tilde{\mathcal{L}}=\oplus_{\left\{u_{k}\right\}} \tilde{\mathcal{L}}_{\left\{u_{k}= \pm 1\right\}}$

$$
\left[\hat{u}_{i j}, \hat{H}\right]=0
$$

$$
\left\{u_{i j}= \pm 1\right\}
$$

$\hat{H}\left(\left\{u_{i j}\right\}^{(1)}, c\right)$	$\hat{H}\left(\left\{u_{i j}\right\}^{(2)}, c\right)$	\cdots
$\hat{H}\left(\left\{u_{i j}\right\}^{(3)}, c\right)$	$\hat{H}\left(\left\{u_{i j}\right\}^{(4)}, c\right)$	\cdots
\ldots	\ldots	\cdots

With $u_{j k}$ being static numbers, the Hamiltonian becomes quadratic of c_{i} Majoranas:

$$
H=\sum_{\langle i j\rangle_{\alpha}}\left(i K_{\alpha} \hat{u}_{i j}\right) c_{i} c_{j} \Rightarrow H=\sum_{\langle i j\rangle_{\alpha}}\left(i K_{\alpha} u_{i j}\right) c_{i} c_{j}
$$

$$
\left\{u_{i j}= \pm 1\right\} \sim \text { vector potential in } \tilde{\mathcal{L}}
$$

Two things are Missing:

- Project the extended $\tilde{\mathcal{L}}$ into \mathcal{L}
- What to assign to $\left\{u_{j k}\right\}$ for ground state?

Plaquette Operators: $\tilde{W}_{p}=\tilde{\sigma}_{1}^{x} \tilde{\sigma}_{2}^{y} \tilde{\sigma}_{3}^{z} \tilde{\sigma}_{4}^{x} \tilde{\sigma}_{5}^{y} \tilde{\sigma}_{6}^{z}$

- \tilde{W}_{p} is conserved: $\left[\tilde{W}_{p}, H\right]=0$
- \tilde{W}_{p} and $\hat{u}_{j k}$ are simultaneouly diagonalizable: $\left[\tilde{W}_{p}, \hat{u}_{j k}\right]=0$

Represent spins by Majoranas $\tilde{\sigma}^{\alpha}=i b^{\alpha} c$, and restrict to \mathcal{L} by enforcing $D_{i}=1$:

$$
\begin{aligned}
\hat{W}_{p} & =\left(i b_{1}^{x} c_{1}\right)\left(i b_{2}^{y} c_{2}\right)\left(i b_{3}^{z} c_{3}\right)\left(i b_{4}^{x} c_{4}\right)\left(i b_{5}^{y} c_{5}\right)\left(i b_{6}^{z} c_{6}\right) \\
& =\left(i b_{2}^{z} b_{1}^{z}\right)\left(i b_{2}^{x} b_{3}^{x}\right)\left(i b_{4}^{y} b_{3}^{y}\right)\left(i b_{4}^{z} b_{5}^{z}\right)\left(i b_{6}^{x} b_{5}^{z}\right)\left(i b_{6}^{z} b_{1}^{z}\right) \\
& =\hat{u}_{21} \hat{u}_{23} \hat{u}_{43} \hat{u}_{45} \hat{u}_{65} \hat{u}_{61}
\end{aligned}
$$

that is, when restricted to $\mathcal{L}, \tilde{W}_{p}$ becomes:

$$
\hat{W}_{p}=\prod_{\langle j k\rangle \in \partial_{p}} \hat{u}_{j k}
$$

- \tilde{W}_{p} is conserved: $\left[\tilde{W}_{p}, H\right]=0$
- \tilde{W}_{p} and $\hat{u}_{j k}$ are simultaneouly diagonalizable: $\left[\tilde{W}_{p}, \hat{u}_{j k}\right]=0$

$$
\hat{W}_{p}=\prod_{\langle j k\rangle \in \partial_{p}} \hat{u}_{j k} \Rightarrow W_{p}=\prod_{\langle j k\rangle \in \partial_{p}} u_{j k} \quad \text { if restricted in } \mathcal{L}
$$

$u_{j k}= \pm 1 \Rightarrow W_{p}= \pm 1$. So the physical \mathcal{L} can be decomposed into sectors of $\left\{W_{p}\right\}$:

- $W_{p}=-1$ is a vortex (flux)
- Physical wavefunction is determined by vortex configuration $\left\{w_{p}\right\}$.
- A fixed vortex configuration can have many different $\left\{u_{j k}\right\}$ configurations.

Take-Aways

- In \mathcal{L}, there are two types of conserved quantities (integrals of motion):

$$
\text { Plaquette } \hat{W}_{p}=\sum_{\langle j k\rangle \in \partial_{p}} \hat{u}_{j k}, \quad \text { and Link } \hat{u}_{j k}=i b_{j}^{\alpha} b_{k}^{\alpha} \text {. }
$$

- Both eigen values of W_{p} and $u_{j k}$ are ± 1.
- Wavefunction in $\tilde{\mathcal{L}}$ is given by link configuration $\left\{u_{j k}\right\}$.
- Physical wavefunction is determined by fixing up the vortices $\left\{W_{p}=\prod_{\partial_{p}} u_{j k}\right\}$.
- Vortex is also (localized) Majorana:
N spins $\uparrow \downarrow \Longleftrightarrow N / 2$ plaquettes ± 1.
Hilbert space size $=\frac{2^{N}}{2^{N / 2}}=2^{N / 2} \Rightarrow \operatorname{dim}\left(W_{p}\right)=\sqrt{2}$.

Diagonalize the Ground State Hamiltonian

Recall that we wanted to diagonalize H represented by sectors of $\left\{u_{j k}\right\}$ in $\tilde{\mathcal{L}}$:

$$
H=\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}}\left(i K_{\alpha} u_{j k}\right) c_{i} c_{j} .
$$

Now the redundant dofs can be projected out by simply fixing a $\left\{w_{p}\right\}$ sector.
Theorem
Lieb (1994): Ground state has no vortices $\Longleftrightarrow\left\{w_{p}=+1\right\}$.
Therefore we can choose the simplist configuration $\left\{u_{j k}=+1\right\}$:

$$
\left\{u_{j k}=+1\right\} \Rightarrow H=\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} i K_{\alpha} c_{j} c_{k}
$$

$$
H=\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} c_{j} c_{k} \Rightarrow \text { Quadratic Hamiltonian of itinerant Majoranas }
$$

Go to momentum space by Fourier transformation:

$$
c_{j}=\frac{1}{\sqrt{N / 2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}_{j}} a_{\vec{k}}, \quad c_{k}=\frac{1}{\sqrt{N / 2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}_{k}} b_{\vec{k}}
$$

1st Brillouin Zone

The Hamiltonian is then block-diagonal:

$$
H=\sum_{\vec{k}} \Psi_{\vec{k}}^{\dagger} \hat{h}_{\vec{k}} \Psi_{\vec{k}}, \quad \text { with } \Psi_{\vec{k}}=\binom{a_{\vec{k}}}{b_{\vec{k}}} \text { and } \hat{h}_{\vec{k}}=\frac{1}{2}\left(\begin{array}{cc}
0 & i f(\vec{k}) \\
-i f^{*}(\vec{k}) & 0
\end{array}\right)
$$

where $f(\vec{k})=i\left(K_{z}+K_{y} e^{-i \vec{k} \cdot \vec{a}_{2}}+K_{x} e^{-i \vec{k} \cdot \vec{a}_{1}}\right)$
Bands are given by

$$
\epsilon(\vec{k})= \pm \frac{1}{2}|f(\vec{k})|
$$

Single particle spectrum

Majorana Bands:

$$
\epsilon(\vec{k})= \pm \frac{1}{2}|f(\vec{k})|
$$

For $K_{\alpha}=C$ it's identical to TB Graphene:

For generic coupling K_{α} :

$$
K_{x}=K_{y}=0
$$

Dynamical structure factor $S(k, \omega)$

Graphene

Kitaev

Summary

- The Honeycomb model has exact solution.

$$
H=-K_{x} \sum_{\langle j k\rangle_{x}} \sigma_{j}^{x} \sigma_{k}^{x}-K_{y} \sum_{\langle j k\rangle_{y}} \sigma_{j}^{y} \sigma_{k}^{y}-K_{z} \sum_{\langle j k\rangle_{z}} \sigma_{j}^{z} \sigma_{k}^{z}
$$

- It is solved by fractionalizing 1 spin- $1 / 2$ to 4 Majoranas with a gauge operator D_{i}. This representation has extensive number of conserved quantities.
- There are two kinds of elementary Majorana excitations:

Localized W_{p} and itinerant c_{j}

- The ground state equivalent to a quadratic Hamiltonain with itinerant Majorana $c_{j} c_{k}$.
- Gapped phase and Gapless phase.

Backup Slides

Experimental probe

Two temperature scales:

- $\boldsymbol{T}_{\boldsymbol{c}}$ at which magnetic order begins to develop
- Phenomenological Curie-Weiss temperature $\Theta_{C w}$, at which magnetic susceptibility χ diverges

$$
\chi \sim \frac{C}{T-\Theta_{C W}}
$$

-

The Phenomenological frustration parameter:

$$
f=\Theta_{C W} / T_{c}
$$

No order $\Rightarrow f \rightarrow \infty$. A large value $f>100$ is a good indication of possible QSL.

Why Majoranas? - Conserved Quantities

- A physical observable \hat{O} is conserved if $[\hat{O}, H]=0$, its eigen value is then termed a good quantum number.
- It allows us to split the Hamiltonian into different quantum sectors labeled by these quantum numbers, thus reduce the dynamical dofs in the problem.
- Extensive number of conserved quantities indicates possible exact solutions.
- Majorana representation of the Hamiltonian has two sets of conserved quantities:

$$
\text { Link operators }\left\{u_{j k}\right\} \text { and Plaquette operators }\left\{W_{p}\right\} .
$$

