Frustrated Magnetism and Quantum Spin Liquids TopoMag23 Crash Course

Shi Feng
Department of Physics, The Ohio State University

Outline

(1) Order and Disorder in Matter
(2) Magnetism
(3) Frustrated Magnetism
(9) Kitaev Quantum Spin Liquid (QSL)
(5) Signature and Material

Phases Matter

gas

liquid
solid

Phases Matter

gas

liquid

449444
49494
ferromegnetic

Order and Disorder

Order and Disorder

Two competing energy scales:
(1) Thermal fluctuation: $\sim k_{B} T$
(2) Interaction between spins $J_{i j}$
$J_{i j} \gg k_{B} T$: Ordered magnet (Ferromagnet or Anti-ferromagnet)
$J_{i j} \ll k_{B} T$: Disordered magnet (Paramagnet)

Phase transition at T_{c}

Landau's symmetry breaking theory
Ordered states spontaneously break the symmetry
(a)

(b)

(b)

(a)
(b)

Ferromagnet

$$
\mathcal{H}=-J \sum_{i} S_{i} \cdot S_{i+1}
$$

Lowest-energy configuration $M=N / 2$:

$\uparrow \uparrow \uparrow$

Some excited states:

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow
\end{aligned}
$$

Ferromagnet

$$
\mathcal{H}=-J \sum_{i} S_{i} \cdot S_{i+1}
$$

Lowest-energy configuration $M=N / 2$:

$$
\uparrow \uparrow
$$

Some excited states:

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow
\end{aligned}
$$

Quasi-particle (Bosons: Spin wave or Magnon)

$$
\mathcal{H}=\sum_{k} \omega_{k} n_{k} \quad \text { free magnons gas }
$$

ω_{k} : dispersion; n_{k} : number of magnons $n_{k}=0:$ vacuum state $(\uparrow \uparrow \cdots \uparrow)$

Dispersion of ferromagnetic magnons

$$
\omega_{k} \sim J[1-\cos (k)]
$$

Each magnon carries $s=1$

Dispersion of ferromagnetic magnons

$$
\omega_{k} \sim J[1-\cos (k)]
$$

Each magnon carries $s=1$

H. A. Alperin et al, J. Appl. Phys. 37, 1052 (1966)

Anti-Ferromagnet

$$
\mathcal{H}=J \sum_{i} S_{i} S_{i+1}, \quad \text { G.S. }=\uparrow \downarrow \uparrow \downarrow \cdots \uparrow \downarrow
$$

Dispersion of anti-ferromagnetic magnons

$$
\omega_{k} \sim J|\sin (k)|
$$

Geometrical Frustration

antiferromagnet e.g. $H=\sum S_{i} S_{j}$

$$
\begin{array}{lllll}
A & \downarrow & \uparrow & \downarrow & A \\
\downarrow & A & \downarrow & A & \downarrow \\
\uparrow & \downarrow & \uparrow & \downarrow & \uparrow
\end{array}
$$

Geometrical Frustration

antiferromagnet e.g. $H=\sum S_{i} S_{j}$

Exchange Frustration

Consequences of Frustrations

(1) No order at $T \rightarrow 0$
(2) No symmetry breaking
(3) No $s=1$ magnons or spin waves

Consequences of Frustrations

(1) No order at $T \rightarrow 0$
(2) No symmetry breaking
(3) No $s=1$ magnons or spin waves
(4) Strong quantum fluctuation \rightarrow quantum spin liquid
(3) Elementry excitations are Spinons $\left(s=\frac{1}{2}\right)$
(0) Broad peaks in neutron scattering

Frustrated Systems (Criteria)

Frustrated Systems (Criteria)

(1) Localized electrons (Mott Insulator)
(2) Small spins, preferably spin- $\frac{1}{2}$
(3) Geometrical or exchange frustration
(9) Spin-orbit coupling

Frustrated Systems (Criteria)

(1) Localized electrons (Mott Insulator)
(2) Small spins, preferably spin- $\frac{1}{2}$
(3) Geometrical or exchange frustration
(9) Spin-orbit coupling

Frustration

Frustration Parameter

Two temperature scales:

- $\boldsymbol{T}_{\boldsymbol{N}}$ at which magnetic order develops
- Curie-Weiss temperature $\boldsymbol{\Theta}_{\text {CW }}$

$$
\chi \sim \frac{C}{T-\Theta_{C W}}
$$

The frustration parameter:

$$
f=\Theta_{C W} / T_{N} .
$$

$f \rightarrow \infty$: True QSL
$f>100$ is a good indication of possible QSL.

Honeycomb model

We follow the description in (Kitaev, 2006; Pachos, 2007)

Two sublattices
Three types of links

Spin $\frac{1}{2}$ on each site, coupled to nearest neighbor by anisotropic spin-spin interaction.

$$
H=-K_{x} \sum_{\langle j k\rangle_{x}} \sigma_{j}^{x} \sigma_{k}^{x}-K_{y} \sum_{\langle j k\rangle_{y}} \sigma_{j}^{y} \sigma_{k}^{y}-K_{z} \sum_{\langle j k\rangle_{z}} \sigma_{j}^{z} \sigma_{k}^{z}
$$

$$
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}
$$

Exchange Frustration in Materials

Evidence for anisotropic spin exchange from diffuse magnetic X-Ray scattering in $\mathrm{Na}_{2} \mathrm{IrO}_{3}$ Chun et al, Nature Physics 11, 462-466 (2015)

Exact Solution of Kitaev QSL (A. Kitaev, 2006)

$$
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}
$$

It has exact QSL ground state at $T=0$ Note: spin σ is localized (Mott Insulator)
(1) 2 types of fractionalized excitations:

- Vortex (Z_{2} flux) W_{p}
- Itinerant Majorana fermion c
(2) Hamiltonian \sim Free c gas
(3) Gapless Majorana bands

Fractionalization (The Exact Solution)

$$
\begin{gathered}
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha} \\
? ? ? ? \downarrow ? ? ? \\
H=\sum_{k} \epsilon(k) \hat{n}_{k}
\end{gathered}
$$

(1) What is the elementary excitation counted by \hat{n}_{k}
(2) What is the band structure $\epsilon(k)$

Fractionalization (The Exact Solution)

$$
\begin{gathered}
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha} \\
? ? ? ? \downarrow ? ? ? \\
H=\sum_{k} \epsilon(k) \hat{n}_{k}
\end{gathered}
$$

(1) What is the elementary excitation counted by \hat{n}_{k}
(2) What is the band structure $\epsilon(k)$

Fractionalization (The Exact Solution)

$$
\begin{gathered}
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha} \\
? ? ? ? \downarrow ? ? ? \\
H=\sum_{k} \epsilon(k) \hat{n}_{k}
\end{gathered}
$$

$$
\begin{gathered}
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} f(\text { fractions of } \sigma) \\
H=\sum_{k} \downarrow \downarrow(k) \hat{n}_{k}
\end{gathered}
$$

(1) What is the elementary excitation counted by \hat{n}_{k}
(2) What is the band structure $\epsilon(k)$
(1) fractions are Majoranas
(2) \hat{n}_{k} counts \# Majorana modes
(3) $\omega(k)$ gives Majorana bands

... and how to cut

- More degrees of freedom to manipulate (cut 1 into 4)
- It must preserve the number of distinguishable states (as a faithful representation)
- It must preserve the $\mathrm{SU}(2)$ algebra of spins $\left[\sigma^{\alpha}, \sigma^{\beta}\right]=2 i \epsilon_{\alpha \beta \gamma} \sigma^{\gamma}$

Majorana: no anti-particle

$$
\tilde{\sigma}_{j}^{\alpha}=i b_{j}^{\alpha} c_{j} \quad \text { for } \alpha=x, y, z
$$

Link Operator: $\hat{u}_{i j}=i b_{i}^{\alpha} b_{j}^{\alpha}$

Link Operator: $\hat{u}_{i j}=i b_{i}^{\alpha} b_{j}^{\alpha}$

$$
H=-\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} K_{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha}
$$

$$
\tilde{H}=i \sum_{\alpha} \sum_{\langle i j\rangle_{\alpha}} K_{\alpha} \hat{u}_{i j} c_{i} c_{j}
$$

Recap

- We have mapped a single spin-1/2 particle into 2 fermionic modes, then to 4 Majorana modes:

- It is a faithful representation because
- (i) These Majoranas give the correct Hilbert space
- (ii) These Majoranas reproduce spin-1/2's SU(2) algebra.
- The spin Hamiltonian into Majorana Hamiltonian by Links:

$$
H=i \sum_{\alpha} \sum_{\langle i j\rangle} K_{\alpha} \hat{u}_{i j} c_{i} c_{j}
$$

Conserved Quantities

Link Operators (vector potential) and Plaquette operators (flux)

$$
\begin{gathered}
{\left[\hat{u}_{i j}, H\right]=0} \\
{\left[\tilde{W}_{p}, H\right]=0} \\
\downarrow
\end{gathered}
$$

Extensive \# of conserved quantites $\left\{W_{p}\right\}$ and $\left\{u_{i j}\right\}$

Link is Conserved: $u_{i j}= \pm 1$

The Hamiltonian using Majorana fermions:

$$
\tilde{H}=-\sum_{\langle i j\rangle_{\alpha}} K_{\alpha} \tilde{\sigma}_{i}^{\alpha} \tilde{\sigma}_{j}^{\alpha}=i \sum_{\langle i j\rangle_{\alpha}}\left[K_{\alpha}\left(i b_{i}^{\alpha} b_{j}^{\alpha}\right)\right] c_{i} c_{j} \equiv i \sum_{\langle i j\rangle_{\alpha}} K_{\alpha} \hat{u}_{i j} c_{i} c_{j} .
$$

link operator: $\hat{u}_{i j}=i b_{i}^{\alpha} b_{j}^{\alpha}$

- $\hat{u}_{i j}$ is conserved: $\left[\hat{u}_{j k}, H\right]=0$.
- $\hat{u}_{j k}^{2}=1$, hence its eigen values are ± 1.

With $u_{i j}$ being static numbers, the Hamiltonian becomes quadratic of c_{i} Majoranas:

$$
H=\sum_{\langle i j\rangle_{\alpha}}\left(i K_{\alpha} \hat{u}_{i j}\right) c_{i} c_{j} \Rightarrow H=\sum_{\langle i j\rangle_{\alpha}}\left(i K_{\alpha} u_{i j}\right) c_{i} c_{j}
$$

What to assign to $\left\{u_{i j}\right\}$ for low energy state?

Diagonalize the Ground State Hamiltonian

Recall that we wanted to diagonalize H represented by sectors of $\left\{u_{j k}\right\}$ in $\tilde{\mathcal{L}}$:

$$
H=\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}}\left(i K_{\alpha} u_{j k}\right) c_{i} c_{j} .
$$

Now the redundant dofs can be projected out by simply fixing a $\left\{w_{p}\right\}$ sector.
Theorem
Lieb (1994): Ground state has no vortices $\Longleftrightarrow\left\{w_{p}=+1\right\}$.
Therefore we can choose the simplist configuration $\left\{u_{j k}=+1\right\}$:

$$
\left\{u_{j k}=+1\right\} \Rightarrow H=\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} i K_{\alpha} c_{j} c_{k}
$$

$$
H=\sum_{\alpha} \sum_{\langle j k\rangle_{\alpha}} i K_{\alpha} c_{j} c_{k} \Rightarrow \text { Quadratic Hamiltonian of itinerant Majoranas }
$$

Go to momentum space by Fourier transformation:

$$
c_{j}=\frac{1}{\sqrt{N / 2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}_{j}} a_{\vec{k}}, \quad c_{k}=\frac{1}{\sqrt{N / 2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}_{k}} b_{\vec{k}}
$$

1st Brillouin Zone

Single particle spectrum

Majorana Bands:

$$
\epsilon(\vec{k})= \pm \frac{1}{2}|f(\vec{k})|
$$

For $K_{\alpha}=C$ it's identical to TB Graphene:

ARPES \& $S(k, \omega)$

Figure: ARPES of Graphene

Figure: Dynamical structure factor of Kitaev model. Hermanns et al, Annu. Rev. Condens. Matter Phys. 9:17-33 (2018)

Summary of Kitaev Spin Liquid

Where to look?

Corner sharing vs edge-sharing

Anisotropy from Spin-orbital coupling

Jackeli and Khaliullin, Phys. Rev. Lett., 102017205 (2009)

Where to look?

$\alpha-\mathrm{RuCl}_{3}$

$\alpha-\mathrm{RuCl}_{3}$

Matsuda Group. Nature 559, 227-231 (2018)

Half-quantized thermal conductivity:

Indicating Majorana fermions in QSL

Conclusion

References

(1) A. Kitaev. 2006. Ann. Phys. 321(1):2-111
(2) L. Savary and L. Balents. Rep. Prog. Phys. 80016502 (2017)
(3) Y. Zhou, K. Kanoda, and T.-K. Ng. Rev. Mod. Phys. 89, 025003 (2017)
(9) M. Hermanns, I. Kimchi, and J. Knolle, Annu. Rev. Condens. Matter Phys. 2018.9:17-33
(3) J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys. 2019.10:451-472
(0) C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, and T. Senthil. Science 367, eaay0668(2020)
(1) S. Trebst, C. Hickey. Physics Reports 950 (2022) 1-37

