observation of anyonic braiding in FQHE

Shi Feng
Department of Physics
The Ohio State University

Nakamura et al, Direct observation of anyonic braiding statistics at the $v=1 / 3$ fractional quantum Hall state (2020)

Outline

Single particle Hamiltonian

The Hamiltonian of a single particle under gauge field is

$$
H=\frac{1}{2 m}(\vec{p}+e \vec{A})
$$

P is the canonical momentum:

$$
\vec{p}=\vec{\pi}-e \vec{A}
$$

Single particle Hamiltonian

The Hamiltonian of a single particle under gauge field is
P is the canonical momentum:

$$
H=\frac{1}{2 m}(\vec{p}+e \vec{A}) \quad \vec{p}=\vec{\pi}-e \vec{A}
$$

mechanical momentum has harmonic-like commutator:

$$
\left[\pi_{x}, \pi_{y}\right]=-i e \hbar B \quad \text { This is Gauge Invariant }
$$

Hamiltonian can be rewritten in Landau levels

$$
H=\frac{\hbar e B}{m}\left[\frac{\pi_{x}+i \pi_{y}}{\sqrt{2 e \hbar B}} \frac{\pi_{x}-i \pi_{y}}{\sqrt{2 e \hbar B}}+\frac{1}{2}\right]=\hbar \omega_{B}\left(a^{\dagger} a+\frac{1}{2}\right)
$$

Single Particle Wavefunction:

Landau Gauge

Landau gauge: $\quad \vec{A}=x B \hat{y} \quad \Longleftrightarrow \quad \nabla \times \vec{A}=B \hat{z}$

$$
H=\frac{1}{2 m}(\vec{p}+e \vec{A})=\frac{1}{2 m}\left[p_{x}^{2}+\left(p_{y}^{2}+e B x\right)^{2}\right]
$$

Single Particle Wavefunction:

Landau Gauge

Landau gauge: $\quad \vec{A}=x B \hat{y} \quad \Longleftrightarrow \quad \nabla \times \vec{A}=B \hat{z}$

$$
H=\frac{1}{2 m}(\vec{p}+e \vec{A})=\frac{1}{2 m}\left[p_{x}^{2}+\left(p_{y}^{2}+e B x\right)^{2}\right]
$$

Y-Translation symmetry: $\quad\left[p_{y}, H\right]=0$

Single Particle Wavefunction:

Landau Gauge

Landau gauge:

$$
\vec{A}=x B \hat{y} \quad \Longleftrightarrow \nabla \times \vec{A}=B \hat{z}
$$

$$
H=\frac{1}{2 m}(\vec{p}+e \vec{A})=\frac{1}{2 m}\left[p_{x}^{2}+\left(p_{y}^{2}+e B x\right)^{2}\right]
$$

Y-Translation symmetry: $\quad\left[p_{y}, H\right]=0$
So the wave function can be factorized: $\psi_{k}(x, y)=e^{i k y} f_{k}(x)$

Degeneracy: $\quad N=\frac{e B L_{x} L_{y}}{h} \equiv \frac{A B}{\Phi_{0}}$

Symmetric Gauge

Symmetric gauge: $\vec{A}=\frac{B}{2} r \hat{\phi} \quad \Longleftrightarrow \nabla \times \vec{A}=B \hat{z}$

Symmetric Gauge

Symmetric gauge: $\vec{A}=\frac{B}{2} r \hat{\phi} \quad \Longleftrightarrow \nabla \times \vec{A}=B \hat{z}$

Define a new "momentum",

$$
\tilde{\pi}=\vec{p}-e \vec{A}
$$

which gives similar commutation:

$$
\left[\tilde{\pi}_{x}, \tilde{\pi}_{y}\right]=i e \hbar B
$$

This is also Gauge Invariant

Symmetric Gauge

Symmetric gauge: $\vec{A}=\frac{B}{2} r \hat{\phi} \quad \Longleftrightarrow \nabla \times \vec{A}=B \hat{z}$

Define a new "momentum" ,

$$
\tilde{\pi}=\vec{p}-e \vec{A}
$$

which gives similar commutation:

$$
\left[\tilde{\pi}_{x}, \tilde{\pi}_{y}\right]=i e \hbar B
$$

This is also Gauge Invariant
A Gauge-dependent commutator:

$$
\left[\pi_{i}, \tilde{\pi}_{j}\right]=f(\vec{A}) \neq 0 \quad \rightarrow\left[\pi_{i}, \tilde{\pi}_{j}\right]=0
$$

Symmetric Gauge

Symmetric gauge: $\vec{A}=\frac{B}{2} r \hat{\phi} \quad \Longleftrightarrow \nabla \times \vec{A}=B \hat{z}$
Define a new "momentum",
which gives similar commutation:

$$
\tilde{\pi}=\vec{p}-e \vec{A} \quad\left[\tilde{\pi}_{x}, \tilde{\pi}_{y}\right]=i e \hbar B
$$

This is also Gauge Invariant
A Gauge-dependent commutator:

$$
\left[\pi_{i}, \tilde{\pi}_{j}\right]=f(\vec{A}) \neq 0 \quad \text { Under Symmetric Gauge } \quad\left[\pi_{i}, \tilde{\pi}_{j}\right]=0
$$

The new momentum is simultaneously diagonalizable!
So we can label degeneracy of Landau levels

$$
b \propto\left(\tilde{\pi}_{x}+i \tilde{\pi}_{y}\right), \quad\left[b, b^{\dagger}\right]=1 \quad \longrightarrow|\psi\rangle=|n, m\rangle
$$

Symmetric Gauge

We focus on the $1^{\text {st }}$ Landau level, whose wave function is:

$$
\psi_{m} \sim z^{m} e^{-|z|^{2} / 4 l_{B}^{2}}
$$

Where m labels the angular momentum:

$$
J \psi_{m}=\hbar(z \partial-\bar{z} \bar{\partial}) \psi_{m}=\hbar m \psi_{m}
$$

Symmetric Gauge

We focus on the $1^{\text {st }}$ Landau level, whose wave function is:

$$
\psi_{m} \sim z^{m} e^{-|z|^{2} / 4 l_{B}^{2}}
$$

Where m labels the angular momentum:

Take Away:

Q: Why Symmetric Gauge? A: Angular Momentum is a symmetry

$$
\vec{A}=\frac{B}{2} r \hat{\phi}
$$

Q: Why Angular momentum?
A: Go to many-body wavefunction

$$
J \psi_{m}=\hbar m \psi_{m}
$$

Two-particle wavefunction

Reduce to one-body problem:

$$
\pi_{c m}=\pi_{1}+\pi_{2}, \quad \pi_{r}=\frac{1}{2}\left(\pi_{1}-\pi_{2}\right)
$$

With a useful commutation:

$$
\left[\pi_{c m, \mu}, \pi_{r, \nu}\right]=0 \quad \text { So we can decompose wavefunction into } \mathrm{CM} \text { and } \mathrm{r} \text { part. }
$$

Two-particle wavefunction

Reduce to one-body problem:

$$
\pi_{c m}=\pi_{1}+\pi_{2}, \quad \pi_{r}=\frac{1}{2}\left(\pi_{1}-\pi_{2}\right)
$$

With a useful commutation:

$$
\left[\pi_{c m, \mu}, \pi_{r, \nu}\right]=0 \quad \text { So we can decompose wavefunction into } \mathrm{CM} \text { and } \mathrm{r} \text { part. }
$$

Central interaction $\mathrm{V}(\mathrm{r})$ respects rotational symmetry, so the wavefunction can be written down:

$$
\psi_{m M} \sim\left(z_{1}-z_{2}\right)^{m}\left(z_{1}+z_{2}\right)^{M} e^{-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) / 4}
$$

Many-body wavefunction: Laughling state

For odd filling factor $\nu=m$

$$
\psi(z)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} \exp \left[-\sum_{i=1}^{N}\left|z_{i}\right|^{2} / 4 l_{B}^{2}\right]
$$

Check:

For a single particle z_{1}, the maximum momentum is $m(N-1)$

$$
R \approx \sqrt{2 m N} l_{B} \Rightarrow A \approx 2 \pi m N l_{B}^{2}
$$

Number of states in the full Landau level is

$$
\# N=\frac{A}{2 \pi l_{B}^{2}} \approx m N \Rightarrow \nu=\frac{1}{m}
$$

Fractional particle: Quasi-holes

A quasi-hole at position η is

$$
\psi_{1-h}(z)=\prod_{i=1}^{N}\left(z_{i}-\eta\right) \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} \exp \left[-\sum_{i=1}^{N}\left|z_{i}\right|^{2} / 4 l_{B}^{2}\right]
$$

Ground state w.f.

M quasi-hole at position $\eta=1,2, \ldots, M$

$$
\psi_{M-h}(z)=\prod_{j=1}^{M} \prod_{i=1}^{N}\left(z_{i}-\eta_{j}\right) \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} \exp \left[-\sum_{i=1}^{N}\left|z_{i}\right|^{2} / 4 l_{B}^{2}\right]
$$

Fractional particle: Quasi-holes

M quasi-hole at position $\eta=1,2, \ldots, M$

$$
\psi_{M-h}(z)=\prod_{j=1}^{M} \prod_{i=1}^{N}\left(z_{i}-\eta_{j}\right) \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} \exp \left[-\sum_{i=1}^{N}\left|z_{i}\right|^{2} / 4 l_{B}^{2}\right]
$$

To see the fractional charge. We put m quasi-holes at the same η

$$
\psi_{m-h}^{@ \eta}(z)=\prod_{i=1}^{N}\left(z_{i}-\eta\right)^{m} \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} \exp \left[-\sum_{i=1}^{N}\left|z_{i}\right|^{2} / 4 l_{B}^{2}\right]
$$

This is exactly the original Laughling wavefunction with AN extra election at η
But if we fix the particle number, i.e. η being just a parameter (not a dynamic var)

Quasi-holes as Anyons

Exchanging 2 identical particles:

$$
\left|x_{1}, x_{2}\right\rangle=e^{i \pi \alpha}\left|x_{2}, x_{1}\right\rangle
$$

2 exchanges $=1$ rotation:

$$
\left|x_{1}, x_{2}\right\rangle=e^{2 i \pi \alpha}\left|x_{1}, x_{2}\right\rangle
$$

Quasi-holes as Anyons

Exchanging 2 identical particles:

$$
\left|x_{1}, x_{2}\right\rangle=e^{i \pi \alpha}\left|x_{2}, x_{1}\right\rangle
$$

2 exchanges $=1$ rotation:

$$
\left|x_{1}, x_{2}\right\rangle=e^{2 i \pi \alpha}\left|x_{1}, x_{2}\right\rangle
$$

For (Abelian) anyons, a can be an arbitrary number

Exchanges in 3D:

Described by (even or odd)

Exchanges in 2D:

Described by Braid Group

Mutual Statistics

Take a charge e around a vortex m. Let $|\xi\rangle$ be a state contatining a magnetic vortex at p_{1}. Let \mathbb{C} be a closed loop around p_{1}, then the braiding operation is defined as:

Example: Toric Code

$$
\left(\prod_{l \in \mathbb{C}} \tau_{\tau}^{z}\right)|\xi\rangle=\left(\prod_{p \in \mathcal{A}_{\mathcal{C}}} B_{p}\right)|\xi\rangle=-|\xi\rangle
$$

R.H.S is the lattice-version of Stokes' theorem

Fractional Statistics by Berry Phase

M quasi-hole at position $\eta=1,2, \ldots, M$

$$
\langle z \mid \psi\rangle=\frac{1}{\sqrt{Z}} \prod_{j=1}^{M} \prod_{i=1}^{N}\left(z_{i}-\eta_{j}\right) \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} \exp \left[-\sum_{i=1}^{N}\left|z_{i}\right|^{2} / 4 l_{B}^{2}\right]
$$

Holomorphic and anti-Holomorphic Berry connections:

$$
\mathcal{A}_{\eta}(\eta, \bar{\eta})=-\frac{i}{2} \frac{\partial \log Z}{\partial \eta} \quad \mathcal{A}_{\bar{\eta}}(\eta, \bar{\eta})=+\frac{i}{2} \frac{\partial \log Z}{\partial \bar{\eta}}
$$

Fractional Statistics by Berry Phase

Holomorphic and anti-Holomorphic Berry connections:

$$
\mathcal{A}_{\eta}(\eta, \bar{\eta})=-\frac{i}{2} \frac{\partial \log Z}{\partial \eta} \quad \mathcal{A}_{\bar{\eta}}(\eta, \bar{\eta})=+\frac{i}{2} \frac{\partial \log Z}{\partial \bar{\eta}}
$$

Recall that the Berry connection of a charge q circulating a magnectic flux Φ is $\gamma=q \Phi / \hbar$

Take Away:

$$
2 \pi \text { rotation } \Longleftrightarrow \Theta=2 \pi / m
$$

*For $m=1$, it become a fermion (an actual hole)

QPC interferometer:

QPC interferometer:

- Backscattering anyons (on QPCs) will braid around localized anyons
- Changing \#localized anyons will change the phase θ_{A}

The total phase is:

$$
\theta=2 \pi \underbrace{\frac{e^{*}}{e} \frac{A_{I} B}{\Phi_{0}}}_{\text {Anyonic Contribution }}+\underbrace{N \theta_{A}}
$$

Vector potential contribution

QPC interferometer:

Focus on the change in conductance:
For $1 / 3$ filling:

$$
\theta=2 \pi \frac{e^{*}}{e} \frac{A_{I} B}{\Phi_{0}}+N \theta_{A} \longrightarrow \sigma \sim \cos \left(\frac{2 \pi}{3} \frac{A_{I} B}{\Phi_{0}}+N \theta_{A}\right)
$$

- Continuous phase evolution: Aharonov-Bohm effect due to vector potential
- Discrete phase evolution: Anyonic contribution $N \theta_{A}$ \#localized particle N decreases with increasing field.

QPC interferometer:

$$
\Delta \theta \equiv \Delta N \theta_{A}
$$

Discrete jump should be integer multiple of anyonic phase contribution.

For $\mathrm{m}=1 / 3, \quad \Delta \theta \sim 2 \pi / 3$

