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Introduction

Question: How does a gapped vs gapless quasi 1D magnetic system
respond to magnetic field?

Spin Orbit Coupling + Coulomb Interaction + d-Orbital Occupancyw�
H = HBLBQ + h

∑
i

Szi , with HBLBQ =
∑
⟨ij⟩

Si · Sj + β(Si · Sj)2

[A spin-1 bilinear-biquadratic (BLBQ) interactions as a function of an applied magnetic field h]

Static and dynamical structure factors:

S(q) =
1

L2

∑
i,j

eiq(ri−rj)⟨Si · Sj⟩, Sαβ(q, ω) =
1

L

∑
r

e−iqr
∫ ∞

−∞
dt ⟨Sα0 (t)S

β
r (0)⟩ eiωt

and entanglement entropy are calculated by density matrix renormalization group:

ρA = TrB
[
|g.s.⟩ ⟨g.s.|

]
, SvN = −Tr

[
ρA log(ρA)

]
Phase Diagram:

Relation to d4 Mott insulators [1]:
Hd4 = Hhop +

∑
i

(Hi,U +Hi,SOC)

By second order perturbation of Hhop:

Hd4 ≈− JFM
∑
⟨ij⟩

(Si · Sj)P(Li + Lj = 1) + λ
∑
i

Li · Si

Under mean field approximation, the orbital can be described by effective S = 1 chain:

HMFT
d4

= Jeff
∑
⟨ij⟩

Si · Sj + (Si · Sj)2 + heff
∑
i

Szi ≃ HULS + h
∑
i

Szi

with Jeff ≃ JFM
∑

⟨ij⟩
〈
Si · Sj

〉
/2 and heff = λ

∑
⟨ij⟩

〈
Si · Sj

〉

Static and Dynamical Response

ULS Hamiltonian in its slave fermions form Si ≡ ψ
†
iSiψi with ψi = (di,1, di,0, di,−1):

HULS − const =
∑
⟨ij⟩

Si · Sj + (Si · Sj)2 − const = −
∑

⟨ij⟩;mm′
d
†
i,mdj,md

†
j,m′di,m′

with 3 conserved charges with flavor m = −1, 0, 1, and respectively 3 Fermi momenta km:

[N̂m, HULS] ≡

∑
i

d
†
i,mdi,m, HULS

 = 0,
∑

m=−1,0,1

km = π

At h = 0, 3 bands are degenerate, hence k−1,0,1 = π/3. As SU(3) is broken by a field, k0
remains intact, yet k1, k−1 changes by k1,−1 = π/3± h/v. Hence the soft modes bifurcates:

k1 + k0 = 2π/3− h/v, k0 + k−1 = 2π/3 + h/v·

Low energy spinons of the SU(3) model can be approximated by a pair of chiral fermions:

di,m ≈ fL,m(x)e
−ikmx + fR,m(x)e

ikmx

where fL,m and fR,m respectively denote left and right chiral fermion annihilation operators
relevant form-spinon with momenta km = π/3. Therefore, in the low energy sector for h≪ vkm,
the magnon excitation can be approximated by

S+(x) ≈ f
†
R,1fL,0e

−i(k1+k0)x + f
†
L,1fR,0e

i(k1+k0)x + f
†
R,0fL,−1e

−i(k0+k1)x + f
†
L,−1fR,0e

i(k1+k0)x

Increasing h towards hc1 leads to the reduction of fermi momentum k1 and the de-population
of spinon of m = 1 type. Its complete de-population happens at h = hc1. Upon entering the
B-phase, all excitation channels in S+ relevant for fR/L,1 vanish, and the only modes left are
those with k1 + k0 = k0 = π

Conclusion

1. For both AKLT and ULS model, magnetic field does not polarize them directly, but induces a
gapless intermediate phase.

2. AKLT goes through a gapped-gapless transition at hc1 ≈ 0.8 and polarizes at hc2 = 4.

3. ULS goes through a gapless-gapless transition at hc1 ≈ 0.94 at which the 4-soft modes are
reduced to 1 soft mode at q = π, and polarizes at hc2 = 4.
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