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Topological band structures are not restricted to fermionic systems and can also arise in bosonic
systems such as linear spin waves or magnons. In this term paper I discuss the physics of topological
magnons in the partially polarized phase of models in 2D honeycomb lattice, relevant for the physics
in the high-field limit of Kitaev type quantum spin liquids and spin-orbit coupled magnetic insulators
such as CrI3. To study the phenomenology of topological aspects of magnons, I review the concepts
of Berry phase (curvature), the Holstein-Primakoff transformation, and the semiclassical theory of
thermal conductivity, followed by the linear response theory of thermal Hall coefficient κxy that
relates to the Berry curvature of magnon bands. As a concrete example, I present the derivation of
the magnon Hamiltonian from Kitaev model under high magnetic field; and from a more generic
model with Kitaev, Γ, and Dzyaloshinskii–Moriya (DM) interactions relevant for CrI3. In the latter
example I show the Berry curvature of magnons which can be used to readily get thermal Hall
conductivity at low temperature.
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BERRY CURVATURE AND CHERN NUMBER

Consider a Hamiltonian that depends on time only via
a set of time-dependent parameters R. A system initially
in an eigenstate |n(R(0))〉 will stay as an instantaneous
eigen state of the time-dependent Hamiltonian H(R(t))
throughout the adiabatic evolution. If the parameter
changes slowly in time such that adiabaticity is retained
in the whole process, the only degree of freedom we have
is the phase of the quantum state, which is responsible

for a lot of topological effects such as Berry curvature and
Chern invariant [1]. The state at time t is

|ψ(t)〉 = exp

{
− i
~

∫ t

0

dt′En(~R(t′))

}
exp{iγn(t)} |n(~R(t))〉

(1)
The reason for introducting this exp{iγ} term is clear
from the Schrodinger equation The generic form of such
evolution is:

|ψ(t)〉 = cn(t) |n(R(t))〉 (2)

Plug into the Schrodinger equation we have:

ċn(t) |n(R(t))〉+cn(t)
d

dt
|n(R(t))〉 = − i

~
cn(t)En(t) |n(R(t))〉

(3)
now project onto |n(R(t))〉, it’s readily to get:

ċn(t) =
[
−〈n(R(t))| d

dt
|n(R(t))〉 − i

~
En(t)

]
cn(t) (4)

therefore

cn(t) = exp

{
− i
~

∫ t

0

dt′En(R(t′))

}
× exp

{
−
∫ t

0

dt′ 〈n(R(t′))| d
dt′
|n(R(t′))〉

} (5)

compare with Eq.(2), the berry phase γ is:

γ(t) = i

∫ t

0

dt′ 〈n(R(t′))| d
dt′
|n(R(t′))〉 (6)

Since the wavefunction is time-dependent through R(t),
we can rewrite the time derivative as:

d

dt
= Ṙ · d

dR
≡ Ṙ · ∇R.
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Plug into Eq.(6), the berry phase is then expressed in
term of the trajactory in parameter space:

γ(R) = i

∫ R

0

dR′
〈
n(R′)

∣∣∇R′
∣∣n(R′)

〉
(7)

which is necessarily a real number. On a closed loop in
parameter space, we can define a geometric phase change:

γn(C) = i

∮
c

〈n(R)|∇R|n(R)〉 · dR (8)

such that

|ψ(T )〉 = exp{iγn(C)} exp

{
− i
~

∫ T

0

dt′En(R(t′))

}
|ψ(0)〉 .

From Eq.(7) we see that to calculate the Berry phase
γn, we need to specify two index: the eigen state space
index and the parameter space index. We define berry
connection A - a rank 2 tensor, to meet this need:

Anµ ≡ i 〈n(R)| ∂
∂Rµ

|n(R)〉 (9)

which is also a real number. In this way the Berry phase
γn(C) is expressed as:

γn(C) =

∮
C

~An(R) · dR.

Note that although A is not a gauge invariant, the geo-
metric phase factor is gauge invariant. To show this, we
start with the gauge transformation of ket |n〉:

|n〉 → eiφ(R) |n〉 .

∇R |n〉 → ∇Re
iφ(R) |n〉 = i∇Rφ(R) |n〉+ eiφ(R)∇R |n〉 .

therefore the Berry connection becomes ~An → ~An −
∇Rφ(R), which is not gauge invariant, but γ(C) remains
the same:

γn(C)→ γn(C) =

∮
c

(
~An −∇Rφ(R)

)
· dR = γn(C).

The last step used the gradient theorem for line integrals.
Particularly, for a 3D parameter space, e.g. the real space
coordinate, we can define the Berry curvature:

~Ωn(R) ≡ ∇× ~An ⇒ γn(C) =

∫∫
∂C

~Ωn(R) · dS (10)

by Stokes’ theorem. We write Ω = ∇ × A in Enstein
notation:

Ωαn = iεαβγ∇β 〈n|∇γ |n〉
= iεαβγ 〈∇βn|∇γn〉+ iεαβγ 〈n|∇β∇γn〉

(11)

the second term goes to zero since ε is anti-symmetric
while ∇α∇β is symmetric. Therefore, inserting an resolu-
tion of idensity gives us

~Ωn = iεαβγ
∑
m

〈∇βn|m〉 〈m|∇γn〉 (12)

Note that only m 6= n terms contribute to the above
equation, i.e. m = n term must vanish since Ω must be
real. Hence

Ωαn = iεαβγ
∑
m 6=n

〈n|∇βH|m〉 〈m|∇γH|n〉
(En − Em)2

(13)

from which it is clear that the Berry curvature is ex-
tremely large near degeneracy, where En → Em. In 2D
translationally invariant systems, e.g. Bloch electrons
or magnons, it is convenient to formulate this in the
momentum space:

Ωαn = i
∑
m 6=n

〈n|∂kxH(k)|m〉 〈m|∂kyH(k)|n〉 − (kx ↔ ky)

(En − Em)2

(14)
where H(k) is the Hamiltonian in the momentum space.
The Berry curvature can lead to non-zero Chern number
that is responsible for a lot of topological physics, includ-
ing magnons to be disccused in the coming section. The
Chern number is defined as:

C =
1

2π

∫
1stB.L.

d2~k Ωz(~k) (15)

recall that the velocity with a generic Berry curvature is:

~v =
1

~
∇~kε~k +

e

~
~E · ~Ω(~k) (16)

under time-reversal transformation we have ~̇r → −~̇r, ~̇k →
−~̇k, ~E → ~E, ~B → − ~B, so we must have ~Ω(~k)→ −~Ω(−~k).
Therefore the Chern number changes by:

C → C = − 1

2π

∫
1stB.L.

d2~k Ωz(−~k)

= − 1

2π

∫
1stB.L.

d2~k′ Ωz(~k
′)

(17)

where in the last step we relabelled the dummy variable
~k → ~k′. Comparing with with Eq.(15) we conclude:

C T−→ −C (18)

If the system respects T then we must have C = −C ⇒
C = 0. Therefore in order to have a non-zero Chern
number, the time-reversal symmetry must be broken.
This condition is automatically satisfied in (partially)
polarized magnets that support magnons.



3

THE HOLSTEIN-PRIMAKOFF
TRANSFORMATION

To arrive at an approximate solution that does not use
unwieldy spin operators, we would like to a representation
that uses creation and annihilation operators in the second
quantization. The transformation read:

S+
i =

√
2S φ(ni) ai, S

−
i =

√
2S a†i φ(ni), S

z
i = S − ni

(19)
where we have defined:

ni = a†iai, φ(ni) =

√
1− ni

2S
(20)

where a, a† are bosonic operators. Before going to the
implemetation, let us first have a review of its historical
derivation. The building blocks of a spin Hamiltonian
are:

S+
j = Sxj + iSyj , S−j = Sxj − iS

y
j , n̂j = S − Szj (21)

with nj the eigenvalue of n̂j , which is called the spin
deviation of j-th site. For simplicity, let us consider the
case in which Szj , thus nl, is a good quantum number,
such that the wavefunction can be labelled by local spin
deviations:

|ψ〉 = |n1 . . . nl . . . nN 〉 (22)

Now let us apply these operators to the state. The opera-
tor S+

l will raise Szl , thus lower nl by 1. So we have:

S+
l |n1 . . . nl . . . nN 〉 = c |n1 . . . nl − 1 . . . nN 〉 (23)

it has to satisfy normalization condition:

|c|2 = 〈n1 . . . nl . . . nN |S−l S
+
l |n1 . . . nl . . . nN 〉 (24)

in order to work under nl basis, we rewrite the S−l S
+
l as:

S−l S
+
l = (Sxl − iS

y
l )(Sxl + iSyl )

= Sxl S
x
l + Syl S

y
l + iSxl S

y
l − iS

y
l S

x
l

= S2 − Szl Szl + i[Sxl , S
y
l ]

= S(S + 1)− (S − nl)2 − (S − nl)

= 2Snl − nl(nl − 1) = (2S)

(
1− nl − 1

2S

)
nl

(25)

so that

c =
√

2S

√
1− nl − 1

2S

√
nl (26)

S+
l |· · ·nl · · ·〉 =

√
2S

√
1− nl − 1

2S

√
nl |· · ·nl − 1 · · ·〉

(27)

introducing the creation and annihilation operator a†, a,
the above can be rewritten as:

S+
l |n1 . . . nl . . . nN 〉 =

√
2S

√
1− n̂l

2S
âl |· · ·nl · · ·〉

≡
√

2S φ(n̂l) âl

(28)

where I have used •̂ to emphasize an operator. Hence we
have the first Holstein-Primakoff transformation:

S+
l =

√
2S φ(n̂l) âl (29)

The mapping of S−l can be derived in the same way.

BOSON HAMILTONIAN

The physics of linear spin waves or magnons can be
considered in terms of bosonic Hamiltonian. Consider the
generic magnon field Ψ(r) in quadratic order [2]:

H ≡ 1

2

∫
dr Ψ†(r)H0(r)Ψ(r) (30)

where Ψ(r) = [a1(r), · · · , an(r), a†1(r, · · · , a†n(r))]T, and

a†i (r), ai(r) are bosonic creation and annihilation opera-
tors of i-th degrees of freedom (i-th boson within a unit
cell, or a band index of spin waves) satisfying commuta-

tion [ai(r), a
†
j(r
′)] = δijδrr′ . Note that the total number

of bosons may not be conserved due to the presence of
spin-orbital coupling or many bond-dependent exchange
interactions that are responsible for a†ia

†
j or aiaj . In such

cases, as I will show later in this note, we need to trans-
form ai, a

†
i into its eigen basis and study the quasiparticle

thereof. Under the Fourier transform:

ai(r) =
1√
N

∑
k

e−ik·rai,k, a†i (r) =
1√
N

∑
k

eik·ra†i,k

(31)
where N is the number of unit cells. The Hamiltonian in
momentum space representation reads

H =
1

2

∑
k

(a†k, a−k)Hk

(
ak
a†−k

)
(32)

where ak = (a†1,k, · · · an,k)T. The Hamiltonian is diago-
nalized by a paraunitary matrix Tk such that

H =
1

2

∑
k

(γ†k, γ−k)Ek
(

γk

γ†−k

)

=
∑
k

N∑
m=1

εmk

(
γ†mkγmk +

1

2

) (33)

where γk = (γ1,k, · · · γn,k) and εmk the magnon excitation
energy of mth band. Let Tk be the matrix that diagonalize
the kth block of the bosonic Hamiltonian, that is(

γk

γ†−k

)
= T−1

k

(
ak
a†−k

)
(34)
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and Ek is given by

Ek = T †kHkTk =

(
Ek

E−k

)
, Ek =

ε1k

. . .

εNk


(35)

Note that the matrix Tk can also be regarded as an
alignment of the eigenstates, i.e. T †k ≡ (γ†1,k, · · ·γ

†
1,k) |0〉,

then according to the boson commutation relation the
following paraunitary conditions must be satisfied:

T †kσ3Tk = Tkσ3T
†
k = σ3, σ3 ≡

(
1N×N

−1N×N

)
(36)

To intuitively understand Eq.36 we can test is in 2 band
boson states b1,k and b2,k, where the paraunitary condi-
tions gives

b†1,kb1,k − b
†
2,kb2,k = b1,kb

†
1,k − b2,kb

†
2,k ≡ σ3 (37)

which is true iff b and b† satisfy the boson commutation
relation [b, b†] = 1. For fermions, in contrast, we would

have σ3 ≡ b†1,kb1,k − b
†
2,kb2,k 6= −(b1,kb

†
1,k − b2,kb

†
2,k) ≡

−σ3.

THERMAL HALL CONDUCTIVITY

The thermal hall effects is one of the most salient feature
of topological magnons [3]. I first review the semiclassi-
cal picture of thermal conductivity using relaxation time
approximation, follwed by the linear response theory of
heat conduction under a temperature gradient and the
derivation of the thermal current operator from the conti-
nuity equation. The section is converged by the discussion
of the thermal Hall coefficient and its relation to Berry
curvature of magnon band structure.

Semi-classical phenomenology

In this section I review the semi-classical theory of
thermal transport based on Chapter 13 of Ashcroft and
Mermin [4]. This picture is based on the relaxation-time
approximation as fellows: (i) The distribution of electron
emerging from collisions at any time does not depend on
the non-equilibrium distribution function g(r,k, t) prior to
the collision – as is required by the Marchovian nature of
collision; and (ii) the equilibrium distribution appropriate
to a local temperature T (r), g0

n(r,k) of nth band, is a fixed
point w.r.t. the collision, that is, effectively unaltered by
any possible collisions. Therefore, if in the time interval
dt a fraction of dt/τn(r,k) of the electrons in band n with
momentum k near position r suffers a collision that alters
the band index and/or momentum, the distribution of
electrons that emerge from collisions into the same band

n and momentum k during the same time interval must
precisely compenstate for this loss. This translates to the
fellowing simple relation:

dgn(r,k, t) =
dt

τn(r,k)
g0
n(r,k) (38)

Given this relation, now we can calculate the nonequilib-
rium distribution function under temperature gradient
and/or external fields. Consider a phase space volumn
drdk abour r,k. The number of particles therein is given
by

dN = gn(r,k, t)
drdk

4π3
(39)

This can be expressed in an alternative form whereby dN
is grouped into different patches emerging from collisions
at earlier times. The dN electrons that locate at the
aforementioned phase space volumn must have emerged
due to the last collision at t′ prior to t within a phase space
volumn dr′dk′ about rn(t′), kn(t′). After the collision
at t′ the motion of part of these electrons (those that
remain unscattered until t) is completely determined by
the semi-classical equation of motion whose solution gives
rn(t) = r, kn(t) = k. Eq.38 tells us that the number
of particles that are scattered out of the equilibrium
distribution around the phase space volumn dr′dk′ is the
same as the number of those emerging from collisions
at rn(t′), kn(t′) into the volumn element dr′dk′ in the
interval dt′. Therefore, the number of particles that are
scattered out of the phase space volumn dr′dk′ during dt′

around t′ is given by

dn(t′) =
dt′

τn(rn(t′),kn(t′))
g0
n(rn(t′),kn(t′))

drdk

4π3
(40)

where we used Liouville’s theorem to make the replace-
ment dr′dk′ = drdk. Among these particles, only a frac-
tion Pn(k,k, t; t′) survive from t′ to t without suffering
any further collisions and arrive at the phase volumn drdk
around r,k driven by the equations of motion. Consider-
ing the probability P and all possible t′ where collisions
happen, the total number of electrons in drdk around r,k
and time t can be written as

dN =

∫ t

−∞
dn(t′)P (t, t′) =

drdk

4π3

∫ t

−∞

dt′g0
n(t′)Pn(t, t′)

τn(t′)
(41)

where we have suppressed the notation r(t′) and k(t′),
etc. Comparing this equation to Eq.39 we have

gn(t) =

∫ t

−∞

dt′

τn(t′)
g0
n(t′)P (t, t′) (42)

It still remains to compute the specific form of P (t, t′).
Noting that the fraction that survive from t′ to t is less
than the fration that survive from t′ + dt′ to t by the
factor (1− dt′/τ(t′)), i.e. the fraction of electrons that do



5

not suffer from collision at a time interval dt′. Hence we
readily have

P (t, t′) = P (t, t′ + dt′)

(
1− dt′

τ(t′)

)
(43)

by having dt′ → 0 we immediatel have the following
differential equation

∂

∂t′
P (t, t′) =

P (t, t′)

τ(t′)
, s.t. P (t, t) = 1 (44)

such that Eq.42 becomes gn(t) =
∫ t
−∞ dt′g0

n(t′) ∂
∂t′P (t, t′).

Integral by parts gives us

gn(t) = g0
n(t)−

∫ t

−∞
dt′P (t, t′)

d

dt′
g0
n(t′) (45)

Note that the time evolution of the position and momen-
tum are determined by the equations of motion:

ṙ = vn(k) =
1

~
∂εn(k)

∂k
+ vano(k) (46)

~k̇ = −e
[
E(r, t) +

1

c
vn(k)×H(r, t)

]
(47)

with vano(k) the anormalous velocity potentially induced
by Berry curvature and external field H. The second equa-
tion due to the Lorentzian force and E the electric field.
This allows us to relate the distribution function to the
Berry curvature and external field. At equilibrium, g0

n be-
comes the Fermi distribution function f(ε(k)), and is time
dependent only through ε(kn(t′)), T (rn(t′)), µ(rn(t′)).
Therefore the time derivative of g0

n above becomes

dg0
n(t′)

dt′
=
∂g0

n

∂εn

∂εn
∂k
· dkn
dt′

+
∂g0

n

∂T

∂T

∂r
· drn
dt′

+
∂g0

n

∂µ

∂µ

∂k
· dkn
dt′

(48)

which can be expanded according to Eq.46 and Eq.47.
Therefore, Eq.45 becomes

gn(t) = g0
n(t) +

∫ t

−∞
dt′P (t, t′)

[(
−∂f
∂ε

)
v ·
(
−eE−∇µ−

(
ε− µ
T

)
∇T
)]

(49)

where we have set H = 0, c = ~ = 1; and used the
following equivalence:

∂f

∂T
= −∂f

∂ε

(
ε− µ
T

)
,
∂f

∂µ
= −∂f

∂ε
(50)

as can be readily checked in the Fermi-Dirac distribution.
Eq.49 is of central importance in all kinds of semiclassical
theories of conductivity. For the interest of this paper,
I will focus on the thermal transport relevant for the
thermal Hall effects of topological magnons.

The thermal current is intimately related to entropy
current by dQ = TdS. In a fixed volumn element, changes
in entropy reduces to the change of internal energy and
particle number:

TdS = dU − µdN (51)

that is, the total thermal transport can be decomposed
into the energy current and the particle current density
i.e. jq = T js = jε − µjn, respectively given by

jn =
∑
n

∫
dk

4π
vn(k)gn(k) (52)

jε =
∑
n

∫
dk

4π
εn(k)vn(k)gn(k) (53)

therefore the total thermal current density is

jq =
∑
n

∫
dk

4π
(εn(k)− µ)vn(k)gn(k) (54)

Under static field and temperature gradient, the only
time-dependent piece is P (t, t′). Here we assume the
energy-dependent relaxation time, that is, τ depends
on momentum only through ε(k), thus τ is no longer
dependent on t′ and P = e−(t−t′)/τn(k); and the integral
in dt′ acts only on P (t, t′). This gives us the distribution
function:

gn(k) = g0
n(k)+τ(k)

(
∂f

∂ε

)
v(k)·

[(
∂µ

∂T
+
ε(k)− µ

T

)
∇T
]

(55)

where we used
∫ t
−∞ P (t, t′)dt′ =

∫ t
−∞ e−(t−t′)/τdt′ = τ ,

∇µ = ∂µ
∂T∇T , and assumed E,H = 0 for convenience.

Therefore Eq.54 can be written as

jq = L1 · ∇T +L2 ·
∇T
T

= L1 · ∇T −L2 ·
(
∇ 1

T

)
T (56)

where L1 and L2 are tensors (dyadics). This expression de-
scribes the thermal current along different directions w.r.t
the temperature gradient. The thermal hall measurement
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is intersted in the thermal current in transverse directions.
Hence it is convenient to write the total phenomenological
thermal current in the form

Jqµ = Lµν

(
T∇ν

1

T
−∇νT

)
(57)

where the semiclassical coefficient can be read from Eq.54
and Eq.55.

Thermal current operator and pseudo-gravitational
potential

In the standard linear response theory where parti-
cles are coupled to external fields, the field should enter
the Hamiltonian as a perturbation and can be treated
by usual time-dependent perturbation theory. However,
the temperature gradient affects transport in a different
way: temperature does not affect the Hamiltonian, but af-
fects the Boltzmann factor exp(−βH). This problem was
first overcame by Luttinger who introduced a fictitious
gravitational field.

The temperature gradiate can be written in terms of
the deviation from one end to the other:

T (r) = T0(1− χ(r)) (58)

where T0 is a constant and χ(r) is a weak spacial pertura-
tion to the uniform temperature. The key insight is that
this χ(r) can be regarded as a space-dependent prefactor
to the original Hamiltonian. To the leading order, this is

e−H/kBT = e−H/[kBT0(1−χ(r))] ≈ e−(1+χ(r))H/kBT0 (59)

where we used (1 − χ)−1 = 1 + χ + O(χ2) with the
assumption χ� 1. Thereofre χ(r)H can be regarded as a
perturbation to the Hamiltonian due to the temperature
gradient. In the dimensionless measure this gradient is

∇
(
T

T0

)
= −∇χ(r) (60)

such grandient causes a change in effective Hamiltonian
that is propotional to the energy δH(r) = Heff(r)−H ≈
χ(r)H, where H is considered uniform in a translationally
invariant system. Hence

δH =

∫
dr[∇χ(r)]H = −

∫
dr

[
∇
(
T

T0

)]
H (61)

compare with the usual setup of perturbation theory

H = H0 +H′, H′ =

∫
f(r)B(r)dr (62)

where in magnets B usually takes the form B = (H · S)n̂.

We can then interpret ∇χ(r), thus ∇
(
T
T0

)
, as a fictitious

force due to the pseudogravitational potential χ(r) or

T (r))/T0; and that such a force is proportional to the
particle energy encoded in H in analogy to that spins
density are coupled to local magnetic field.

The total Hamltonian that incorporates such field is

HT = H+ F (63)

where F is the contribution from temperature gradient
(in a symmetrized form):

F =
1

4

∫
drΨ†(r)(H0χ+ χH0)Ψ(r) (64)

According to the semiclassical picture, we are interested
in the thermal transport coefficient as a linear response
to the gradient of the pseudo-gravitational potential,

〈
Jqµ
〉

= Lµν

(
T∇ν

1

T
−∇νχ

)
(65)

The thermal hall conductivity κµν is then defined as

κµν = Lµν/T (66)

Let us now calculate the thermal current density operator
in the presence of χ. The total Hamiltonian defined
previously can be rewritten as

HT =
1

2

∫
dr
(

1 +
χ

2

)
Ψ†(r)H0

(
1 +

χ

2

)
Ψ(r) (67)

the form of current density operator can be derived from
the continuity equation

ḣT +∇ · jq(r) = 0 (68)

where hT = 1
2 (1 + χ

2 )Ψ†(r)(1 + χ
2 )Ψ(r) is the local energy

density. Here without delving into details, which can be
found in Ref.[2], the thermal hall conductivity reads

κxy = −k
2
BT

~V
∑
k

N∑
n=1

{
c2[g(εn(k))]− π2

3

}
Ωn(k) (69)

where g is the Bose distribution 1/[exp(ε/kBT )−1], Ωn(k)
the Berry curvature of nth band, and c2 is defined as

c2(x) ≡
∫ x

0

dt

(
ln

1 + t

t

)2

(70)

POLARIZED KITAEV MAGNET

In this section I discuss the linear spin waves in the
polarized phase of Kitaev model under a polarizing out-
of-plane magnetic field along e3, as shown in Fig.2. The
[111] direction corresponds to the e3 direction in the lab
coordinate. The lab coordinate is related to the intrinsic
coordinate defined by the ligands (See Fig.2(b)) according
to the relation between the orthogonal (e1, e2, e3) basis
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and the intrinsic basis shown in Fig. 2(a,b), where unit
vectors are related through: ê1 = 1√

6
(−x̂− ŷ + 2ẑ), ê2 =

1√
2
(x̂ − ŷ), ê3 = 1√

3
(x̂ + ŷ + ẑ), hence the projection of

spins:

Se1i =
1√
6

(−Sxi − S
y
i + 2Szi ) =

1

2
(S+
i + S−i ) (71)

Se2i =
1√
2

(Sxi − S
y
i ) =

1

2i
(S+
i − S

−
i ) (72)

Se3i =
1√
3

(Sxi + Syi + Szi ) (73)

where we defined S± ≡ Se1i ± iS
e2
i . We can write the

intrinsic spin operator in terms of the lab frame operators

Sxi =
1√
6

(θS+
i + θ∗S−i +

√
2Se3i ) (74)

Syi =
1√
6

(θ∗S+
i + θS−i +

√
2Se3i ) (75)

Szi =
1√
6

(S+
i + S−i +

√
2Se3i ) (76)

where θ ≡ − 1
2 (1 +

√
3i) = e−i

2π
3 . Note θθ∗ = 1, θ2 = θ∗,

θ + θ∗ + 1 = 0 and (θ∗)2 = θ. For the partially polarized
state along [111] we define the boson as fluctuation againt
the e3 direction:

Se3i = S − a†iai, (77)

S+
i ≈

√
2S

(
1− a†iai

4S

)
ai, (78)

S−i ≈
√

2Sa†i

(
1− a†iai

4S

)
(79)

Then the spin operators can be approximated by

Sxi =
1√
3

[
√
S(θai + θ∗a†i )− a

†
iai + S] (80)

Syi =
1√
3

[
√
S(θ∗ai + θa†i )− a

†
iai + S] (81)

Szi =
1√
3

[
√
S(ai + a†i )− a

†
iai + S] (82)

up to the quadratic order. So the Kitaev exchange can be
written as quadratic boson operators shown in Appendix.;
and the magnetic field per unit cell is

− he3i (Se3i,A + Se3i,B) ≈ −he3i (2S − a†iai − b
†
i bi) (83)

Then the non-interacting part of Kitaev Hamiltonian
under [111] field is

H0
K =

1

3

∑
i∈A

[
(3S2 − 6She3)− 3(S − he3)a†iai

− (S − 3he3)b†i bi − Sb
†
i+n1

bi+n1
− Sb†i+n2

bi+n2

+ S(θ∗aibi+n1
+ θaibi+n2

+ aibi

+ aib
†
i+n1

+ aib
†
i+n2

+ aib
†
i + h.c.)

]
(84)

FIG. 1. Linear spin wave bands in the bulk of the polarized
Kitaev magnet with he3/K = 4. (a) The first Brillouin zone
(b) cuts of linear spin wave bands along K − Γ −M −K.

where we have restricted the bond-dependent interactions
to be identical in strength (Kx = Ky = Kz ≡ 1) such
that linear bosonic operators cancel due to θ+ θ∗+ 1 = 0.
In momentum space we have:

H0
K =

N

2
(S2 − 2She3)− (S − he3)

∑
k

(a†kak + b†kbk)

+
S

3

∑
k

[
∆kakb

†
k + ∆θ

kakb−k + h.c.
]

(85)

where we defined

∆k ≡
(
1 + e−ik·n1 + e−ik·n2

)
, (86)

∆θ
k ≡

(
1 + θ∗e−ik·n1 + θe−ik·n2

)
(87)

By diagonalizing this bosonic Hamiltonian we get the
magnon band structure of the polarized Kitaev magnet
along e3 direction, as is shown in Fig.1.

TOPOLOGICAL MAGNONS IN J-K-Γ

In this section I discuss the topological magnons in the
J −K − Γ model relevant for the quasi-2D magnetic ma-
terial CrI3 [5], which includes energy contribution from (i)
Kitaev exchange, (ii) Heisenberg exchange, (iii) DM inter-
action, (iv) off-diagonal or Γ exchange, (v) on-site single
ion anisotropy and (iv) other next-to-nearest-neighbor
interactions which are of minor importence in the context.
I will present the linear spin wave theories on (i) - (v)
and their resultant magnon band with non-trivial Berry
curvature responsible for thermal Hall effects. The energy
scale for these interactions are reported in Ref.[5] using
density functional theory.

Heisenberg Exchange

By the same token used in the previous section, the
Heisenberg exchange can be written in the boson language
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as∑
i∈A

~Si,A · ~Sj,B =
∑
i∈A

Se3i,AS
e3
j,B +

1

2

(
S+
i,AS

−
j,B + S−i,AS

+
j,B

)
≈
∑
i∈A

S(aib
†
j + a†i bj − a

†
iai − b

†
jbj)

+
1

4
(4a†iaib

†
jbj − a

†
ia
†
iaibj

− a†iaiaib
†
j − aib

†
jb
†
jbj − a

†
i b
†
jbjbj) + S2

(88)

where j ∈ {i, i + n1, i + n2}. The quadratic part of
Heisenberg exchange is

H0
J =

3N

2
S2−3S

∑
k

(a†kak+b†kbk)+S
∑
k

(∆kakb
†
k+h.c.)

(89)

Γ exchange

The Γ exchange, i.e. the off-diagonal exchange is al-
lowed by symmetry of CrI3. Its contribution to Hamilto-
nian is

HΓ = Γ
∑

〈ij〉∈αβ(γ)

(Sαi S
β
j + Sβi S

α
j ) (90)

where the notation 〈ij〉 ∈ αβ(γ) stands for bonds (i, j =
i+ δγ) with γ 6= α, β. The Γ exchange in terms of linear
spin waves is shown in Appendix.. The quadratic part
reads

H0
Γ =NS2 − 1

3

∑
i∈A

2S(3a†iai + b†i bi + b†i+n1
bi+n1

+ b†i+n2
bi+n2

) +
1

3

∑
i∈A

S(2θ∗aibi+n1
+ 2θaibi+n2

+ 2aibi − aib†i+n1
− aib†i+n2

− aib†i + h.c.)

(91)

Now we move to the momentum space by a Fourier trans-
form of boson operators. This gives:

H0
Γ =NS2 − 2S

∑
k

(a†kak + b†kbk)

+
S

3

∑
k

(2∆θ
kakb−k −∆kakb

†
k)

(92)

DM exchange

We now turn to D-M interaction. From previous texts
it is readily to see that the real space Hamiltonian up to

2nd order reads

H0
D = S

√
3
∑
〈〈ij〉〉

(iaia
†
j + h.c.)

= S
√

3
∑
i∈A

(iaia
†
i−n1

+ iaia
†
i+n2

+ iaia
†
i+n1−n2

+ h.c.)

+ S
√

3
∑
i∈B

(ibib
†
i+n1

+ ibib
†
i−n2

+ ibib
†
i+n2−n1

+ h.c.)

(93)

where
√

3 comes from θ∗ − θ; and note that i, j belong to
the same sublattice. In momentum space we have

H0
D = S

√
3
∑
k

[
i
(
eik·n1 + e−ik·n2 + e−ik·(n1−n2)

)
a†kak + h.c.

]
+ S
√

3
∑
k

[
i
(
e−ik·n1 + eik·n2 + eik·(n1−n2)

)
b†kbk + h.c.

]
= 2
√

3S
∑
k

(
Ξka

†
kak + Ξ−kb

†
kbk

)
(94)

where we defined

Ξk = − sin(k · n1) + sin(k · n2) + sin[k · (n1 − n2)] (95)

Single-ion anisotropy

Finally, the single-ion anisotropy, to the leader order, is

H0
A = NS2 − 2S

∑
k

(a†kak + b†kbk) (96)

Therefore, the full LSW Hamiltonian is

HLSW = H0
J +H0

K +H0
Γ +H0

D +H0
A −He3

=
∑
k

[
dka
†
kak + d−kb

†
kbk

+
(
pkakb

†
k + qkakb−k + h.c.

)
+ C

(97)

where

dk = −S(3J +K + 2Γ + 2A− 2
√

3DΞk) + he3 (98)

pk = S

(
J +

K

3
− Γ

3

)
∆k (99)

qk = S

(
K

3
+

2Γ

3

)
∆θ

k (100)

By symmetrizing the momentum we have

HLSW =
1

2

∑
k

[
dka
†
kak + d−ka

†
−ka−k + d−kb

†
kbk

+ dkb
†
−kb−k +

(
pkakb

†
k + p−ka−kb

†
−k

+ qkakb−k + q−ka−kbk + h.c.
)] (101)
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FIG. 2. (a) A 2D plane of CrI3 on honeycomb lattice, with the crystal cooridnate defined by ligands shown in panel (b).
(c) Magnon band structure with respect to the [111] i.e. the e3 direction, the data is obtained by including the in-plane
next-to-nearest neighbor coupling according to Ref.[5]. (d) the Berry curvature of the aforementioned magnon band.

Now we diagonalize this Hamiltonian. In the matrix form
we have

Ψk ≡ (ak, bk, a
†
−k, b

†
−k)T, HLSW =

1

2

∑
k

Ψ†kHkΨk

(102)
where

Hk =


dk p∗k 0 q∗k
pk d−k q∗−k 0
0 q−k d−k p−k
qk 0 p∗−k dk

 (103)

Diagonalizing the Hamiltonian in k space gives the band
structure of linear spin waves around e3 axis, as is shown
in Fig.2(c). Then by using Eq.14 we know the Berry
curvature Ω. Then we can use it to derive the thermal hall
coefficient in finite temperature (assuming anharmonic

terms and higher order effects are negligible) by Eq.69,
which will be discussed in future investigation that relates
to experiments.
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APPENDIX

In this appendix I show the spin-spin exchange in terms
of Holstein-Primakoff bosons. They are then kept upto
the quardatic order to get the band structure. Note that
the linear terms are cancelled with each other due to
θ + θ∗ + 1 = 0.

Spin exchanges relevant for Kitaev interaction:

Sxi,AS
x
i+n1,B =

1

3

[
S(θ∗aibi+n1 + aib

†
i+n1

+ h.c.)− S(a†iai + b†i+n1
bi+n1) + S

3
2 (θai + θbi+n1 + h.c.) + S2

]
(104)

Syi,AS
y
i+n2,B

=
1

3

[
S(θaibi+n2

+ aib
†
i+n2

+ h.c.)− S(a†iai + b†i+n2
bi+n2

) + S
3
2 (θ∗ai + θ∗bi+n2

+ h.c.) + S2
]

(105)

Szi,AS
z
i,B =

1

3

[
S(aibi + aib

†
i + h.c.)− S(a†iai + b†i bi) + S

3
2 (ai + bi + h.c.) + S2

]
(106)

The Γ exchange reads (will leave out A,B. Assume i ∈ A and j ∈ B):

Sxi S
y
i =

1

3

[
S(aibi + θ∗aib

†
i + h.c.)− S(a†iai + b†i bi) + S3/2(θai + θ∗bi + h.c.) + S2

]
(107)

Syi S
z
j =

1

3

[
S(θ∗aibj + θ∗aib

†
j + h.c.)− S(a†iai + b†jbj) + S3/2(θ∗ai + b†j + h.c.) + S2

]
(108)

Szi S
x
j =

1

3

[
S(θaibj + θ∗aib

†
j + h.c.)− S(a†iai + b†jbj) + S3/2(ai + θbj + h.c.) + S2

]
(109)
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