Spin Wave Theory

Shi Feng

1 Magnons in Heisenberg Model

The Heisenberg interaction is:

$$
\begin{equation*}
\mathbf{S}_{i} \cdot \mathbf{S}_{j}=\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+S_{i}^{z} S_{j}^{z} \tag{1.1}
\end{equation*}
$$

The Hamiltonian is:

$$
\begin{equation*}
H=-\sum_{i, j} J_{i j}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{z} S_{j}^{z}\right)-B \sum_{i} S_{i}^{z} \tag{1.2}
\end{equation*}
$$

where $J_{i j}=J_{j i} ; \quad J_{i i}=0$, and $B=\frac{1}{\hbar} g_{J} \mu_{B} B_{0}$. Now we move to momentum space by F.T. defined as:

$$
\begin{align*}
& S^{\alpha}(k)=\sum_{i} e^{-i k R_{i}} S_{i}^{\alpha} \\
& S_{i}^{\alpha}=\frac{1}{N} \sum_{k} e^{i k R_{i}} S^{\alpha}(k) \tag{1.3}
\end{align*}
$$

we did not use the symmetric Fourier coefficient since we want a clean commutation in momentum space, as derived below:

$$
\begin{align*}
{\left[S^{+}\left(k_{1}\right), S^{-}\left(k_{2}\right)\right] } & =\sum_{i j} e^{-i k_{1} R_{i}-i k_{2} R_{j}}\left[S_{i}^{+}, S_{j}^{-}\right]=2 \sum_{i j} e^{-i k_{1} R_{i}-i k_{2} R_{j}} \delta_{i j} S_{i}^{z} \\
& =2 \sum_{j} e^{-i\left(k_{1}+k_{2}\right) R_{j}} S_{j}^{z}=2 S^{z}\left(k_{1}+k_{2}\right) \tag{1.4}
\end{align*}
$$

where we have set $\hbar=1$. Similarly:

$$
\begin{align*}
{\left[S^{z}\left(k_{1}\right), S^{ \pm}\left(k_{2}\right)\right] } & =\sum_{i j} e^{-i k_{1} R_{i}-i k_{2} R_{j}}\left[S_{i}^{z}, S_{j}^{ \pm}\right]= \pm \sum_{i j} e^{-i k_{1} R_{i}-i k_{2} R_{j}} \delta_{i j} S_{i}^{ \pm} \tag{1.5}\\
& = \pm \sum_{j} e^{-i\left(k_{1}+k_{2}\right) R_{j}} S_{j}^{ \pm}= \pm S^{ \pm}\left(k_{1}+k_{2}\right)
\end{align*}
$$

in short:

$$
\begin{equation*}
\left[S^{+}\left(k_{1}\right), S^{-}\left(k_{2}\right)\right]=2 S^{z}\left(k_{1}+k_{2}\right), \quad\left[S^{z}\left(k_{1}\right), S^{ \pm}\left(k_{2}\right)\right]= \pm S^{ \pm}\left(k_{1}+k_{2}\right) \tag{1.6}
\end{equation*}
$$

and it's readily to see that:

$$
\begin{equation*}
\left[S^{ \pm}(k)\right]^{\dagger}=S^{\mp}(-k) \tag{1.7}
\end{equation*}
$$

Now we are going to transform the Hamiltonian to momentum space. Generically what we need is $\mathcal{F}\left\{\sum_{i j} J_{i j} S_{i}^{\alpha} S_{j}^{\beta}\right\}$. By translational symmetry we rewrite this term as:

$$
\begin{equation*}
\sum_{i, j} J_{i j} S_{i}^{\alpha} S_{j}^{\beta}=\sum_{i, r} J(r) S_{i}^{\alpha} S_{i+r}^{\beta} \tag{1.8}
\end{equation*}
$$

expand spin operator in momentum space:

$$
\begin{align*}
& S_{i}^{\alpha}=\frac{1}{N} \sum_{k} e^{i k R_{i}} S^{\alpha}(k) \\
& S_{i+r}^{\beta}=\frac{1}{N} \sum_{k} e^{i k\left(R_{i}+r\right)} S^{\beta}(k) \tag{1.9}
\end{align*}
$$

Then we have:

$$
\begin{align*}
\sum_{i, r} J(r) S_{i}^{\alpha} S_{j}^{\beta} & =\frac{1}{N^{2}} \sum_{r} J(r) \sum_{k, k^{\prime}} e^{i k^{\prime} r}\left(\sum_{i} e^{i\left(k+k^{\prime}\right) R_{i}}\right) S^{\alpha}(k) S^{\beta}\left(k^{\prime}\right) \\
& =\frac{1}{N} \sum_{r} J(r) \sum_{k} e^{-i k r} S^{\alpha}(k) S^{\beta}(-k) \\
& =\frac{1}{N} \sum_{k}\left(\sum_{r} J(r) e^{-i k r}\right) S^{\alpha}(k) S^{\beta}(-k) \tag{1.10}\\
& \equiv \frac{1}{N} \sum_{k} J(k) S^{\alpha}(k) S^{\beta}(-k)
\end{align*}
$$

where we have defined $J(k)=\sum_{r} J(r) \exp (-i k r)$, which satisfies $J(k)=J(-k)$ if it is symmetric under reflection. Note that another equivalent form is sometimes useful:

$$
\begin{equation*}
J(k)=\frac{1}{N} \sum_{i, j} J_{i j} e^{-i k\left(R_{j}-R_{i}\right)} \tag{1.11}
\end{equation*}
$$

there is an additional factor of $\frac{1}{N}$ due to the repeated counting of identical bonds.
The on-site operator in momentum space is:

$$
\begin{equation*}
\sum_{i} S_{i}^{\alpha}=\sum_{i} \frac{1}{N} \sum_{k} S^{\alpha}(k) e^{i k R_{i}}=S^{\alpha}(0) \tag{1.12}
\end{equation*}
$$

Therefore the full Hamiltonian in momentum space is:

$$
\begin{equation*}
H=-\frac{1}{N} \sum_{k} J(k)\left\{S^{+}(k) S^{-}(-k)+S^{z}(k) S^{z}(-k)\right\}-B S^{z}(0) \tag{1.13}
\end{equation*}
$$

Let the ground state be $|S\rangle$ that corresponds to an overall parallel orientation of all the spins, i.e. a product state with local magnetization S. Hence:

$$
\begin{gather*}
S_{i}^{z}|S\rangle=S|S\rangle, \quad S^{z}(k)=\sum_{i} e^{i k R_{i}} S_{i}^{z}|S\rangle=N S|S\rangle \delta_{k, 0} \tag{1.14}\\
S_{i}^{+}|S\rangle=0, \tag{1.15}\\
S^{+}(k)|S\rangle=\sum_{i} e^{i k R_{i}} S_{i}^{+}|S\rangle=0
\end{gather*}
$$

Now let's calculate the eigen energy. By Eq.(1.6) the first term in Hamiltonian gives:

$$
\begin{align*}
-\frac{1}{N} \sum_{k} J(k) S^{+}(k) S^{-}(k)|S\rangle & =-\frac{1}{N} \sum_{k} J(k)\left[S^{-}(-k) S^{+}(k)+2 S^{z}(0)\right]|S\rangle \\
& =-\frac{1}{N}\left(\sum_{k} J(k)\right) 2 N S|S\rangle \tag{1.16}\\
& =-\frac{1}{N} N J(r=0) N S|S\rangle=0
\end{align*}
$$

where at the 3rd row we used $\sum_{k} e^{-i k r}=N \delta_{r, 0}$. While the 2nd term of Hamiltonian gives:

$$
\begin{align*}
-\frac{1}{N} \sum_{k} J(k) S^{z}(k) S^{z}(-k)|S\rangle & =-\frac{1}{N} \sum_{k} J(k) S^{z}(-k) N S \delta_{k, 0}|S\rangle \\
& =-S J(0) S^{z}(0)|S\rangle \tag{1.17}\\
& =-N J(0) S^{2}|S\rangle
\end{align*}
$$

The zeeman term is trivial. Hence we have the eigen equation:

$$
\begin{align*}
& H|S\rangle=E_{0}|S\rangle \\
& E_{0}=-N J(0) S^{2}-N S B \tag{1.18}
\end{align*}
$$

where E_{0} is the ground state energy.
Next we show that

$$
\begin{equation*}
|k\rangle \equiv S^{-}(k)|S\rangle \tag{1.19}
\end{equation*}
$$

is also an eigenstate of H. It's convenient to first look at the commutation [$H, S^{-}(k)$]:

$$
\begin{align*}
{\left[H, S^{-}(k)\right]=} & -\frac{1}{N} \sum_{p} J(p)\left\{\left[S^{+}(p), S^{-}(k)\right] S^{-}(-p)+S^{z}(p)\left[S^{z}(-p), S^{-}(k)\right]+\left[S^{z}(p), S^{-}(k)\right] S^{z}(-p)\right\} \\
& -B\left[S^{z}(0), S^{-}(k)\right] \\
= & -\frac{1}{N} \sum_{p} J(p)\left\{2 S^{z}(k+p) S^{-}(-p)-S^{z}(p) S^{-}(k-p)-S^{-}(k+p) S^{z}(-p)\right\}+B S^{-}(k) \tag{1.20}
\end{align*}
$$

recall that:

$$
\begin{array}{ll}
& {\left[S^{z}\left(k_{1}\right), S^{ \pm}\left(k_{2}\right)\right]= \pm S^{ \pm}\left(k_{1}+k_{2}\right)} \\
\Rightarrow & 2 S^{z}(k+p) S^{-}(-p)=-2 S^{-}(k)+2 S^{-}(-p) S^{z}(k+p) \tag{1.21}\\
\& & S^{z}(p) S^{-}(k-p)=S^{-}(k-p) S^{z}(p)-S^{-}(k)
\end{array}
$$

we replace the 1st and 2nd term in Eq.(1.20) by the above, hence:

$$
\begin{align*}
{\left[H, S^{-}(k)\right]=} & B S^{-}(k)-\frac{1}{N} \sum_{p} J(p)\left\{-2 S^{-}(k)+2 S^{-}(-p) S^{z}(k+p)+\right. \tag{1.22}\\
& \left.\left.+S^{-}(k)-S^{-}(k-p) S^{z}(p)-S^{-}(k+p) S^{z}(-p)\right)\right\}
\end{align*}
$$

Note that $\sum_{p} J(p)=N J(r=0)=0$, so the 1st and 3rd terms in the summation evaluate to zero. We finally find:

$$
\begin{equation*}
\left[H, S^{-}(k)\right]=B S^{-}(k)-\frac{1}{N} \sum_{p} J(p)\left\{2 S^{-}(-p) S^{z}(k+p)-S^{-}(k-p) S^{z}(p)-S^{-}(k+p) S^{z}(-p)\right\} \tag{1.23}
\end{equation*}
$$

Then it's readily to apply this commutator to $|S\rangle$ and extract dispersion:

$$
\begin{gather*}
{\left[H, S^{-}(k)\right]|S\rangle=\omega(k)\left[S^{-}(k)|S\rangle\right]} \tag{1.24}\\
\omega(k)=B+2 S[J(0)-J(k)] \tag{1.25}
\end{gather*}
$$

in which we have used $J(k)=J(-k)$. Hence the eigen energy of state $S^{-}(k)|S\rangle$ is:

$$
\begin{equation*}
H\left(S^{-}(k)|S\rangle\right)=\left(E_{0}+\omega(k)\right)|S\rangle \equiv E(k)\left(S^{-}(k)|S\rangle\right) \tag{1.26}
\end{equation*}
$$

where we have defined the totol energy:

$$
\begin{equation*}
E(k)=E_{0}+B+2 S[J(0)-J(k)] \tag{1.27}
\end{equation*}
$$

Now we normalize the excitation:

$$
\begin{align*}
\langle S|\left(S^{-}(k)\right)^{\dagger} S^{-}(k)|S\rangle & =\langle S| S^{+}(-k) S^{-}(k)|S\rangle \\
& =\langle S| 2 S^{z}(0)+S^{-}(k) S^{+}(-k)|S\rangle \tag{1.28}\\
& =2 N S
\end{align*}
$$

Therefore the Normalized single-magnon state is:

$$
\begin{equation*}
|k\rangle=\frac{1}{\sqrt{2 N S}} S^{-}(k)|S\rangle \tag{1.29}
\end{equation*}
$$

One can check [Wolfgang] which shows that magnons are bosons and carry spin- 1 in a spin- $1 / 2$ system.

2 Holstein-Primakoff transformation

To arrive at an approximate solution that does not use unwieldy spin operators, we would like to a representation that uses creation and annihilation operators in the second quantization. The transformation read:

$$
\begin{align*}
& S_{i}^{+}=\sqrt{2 S} \phi\left(n_{i}\right) a_{i} \\
& S_{i}^{-}=\sqrt{2 S} a_{i}^{\dagger} \phi\left(n_{i}\right) \tag{2.1}\\
& S_{i}^{z}=S-n_{i}
\end{align*}
$$

where we have defined:

$$
\begin{align*}
& n_{i}=a_{i}^{\dagger} a_{i} \\
& \phi\left(n_{i}\right)=\sqrt{1-\frac{n_{i}}{2 S}} \tag{2.2}
\end{align*}
$$

where a, a^{\dagger} are bosonic operators. Before going to the implemetation, let us first have a review of its historical derivation. The building blocks of a spin Hamiltonian are:

$$
\begin{equation*}
S_{j}^{+}=S_{j}^{x}+i S_{j}^{y}, \quad S_{j}^{-}=S_{j}^{x}-i S_{j}^{y}, \quad \hat{n}_{j}=S-S_{j}^{z} \tag{2.3}
\end{equation*}
$$

with n_{j} the eigenvalue of \hat{n}_{j}, which is called the spin deviation of j-th site. For simplicity, let us consider the case in which S_{j}^{z}, thus n_{l}, is a good quantum number, such that the wavefunction can be labelled by local spin deviations:

$$
\begin{equation*}
|\psi\rangle=\left|n_{1} \ldots n_{l} \ldots n_{N}\right\rangle \tag{2.4}
\end{equation*}
$$

Now let us apply these operators to the state. The operator S_{l}^{+}will raise S_{l}^{z}, thus lower n_{l} by 1 . So we have:

$$
\begin{equation*}
S_{l}^{+}\left|n_{1} \ldots n_{l} \ldots n_{N}\right\rangle=c\left|n_{1} \ldots n_{l}-1 \ldots n_{N}\right\rangle \tag{2.5}
\end{equation*}
$$

it has to satisfy normalization condition:

$$
\begin{equation*}
|c|^{2}=\left\langle n_{1} \ldots n_{l} \ldots n_{N}\right| S_{l}^{-} S_{l}^{+}\left|n_{1} \ldots n_{l} \ldots n_{N}\right\rangle \tag{2.6}
\end{equation*}
$$

in order to work under n_{l} basis, we rewrite the $S_{l}^{-} S_{l}^{+}$as:

$$
\begin{align*}
S_{l}^{-} S_{l}^{+} & =\left(S_{l}^{x}-i S_{l}^{y}\right)\left(S_{l}^{x}+i S_{l}^{y}\right)=S_{l}^{x} S_{l}^{x}+S_{l}^{y} S_{l}^{y}+i S_{l}^{x} S_{l}^{y}-i S_{l}^{y} S_{l}^{x} \\
& =\mathbf{S}^{2}-S_{l}^{z} S_{l}^{z}+i\left[S_{l}^{x}, S_{l}^{y}\right]=S(S+1)-\left(S-n_{l}\right)^{2}-\left(S-n_{l}\right) \\
& =2 S n_{l}-n_{l}\left(n_{l}-1\right) \tag{2.7}\\
& =(2 S)\left(1-\frac{n_{l}-1}{2 S}\right) n_{l}
\end{align*}
$$

so that

$$
\begin{gather*}
c=\sqrt{2 S} \sqrt{1-\frac{n_{l}-1}{2 S}} \sqrt{n_{l}} \tag{2.8}\\
S_{l}^{+}\left|n_{1} \ldots n_{l} \ldots n_{N}\right\rangle \tag{2.9}
\end{gather*}=\sqrt{2 S} \sqrt{1-\frac{n_{l}-1}{2 S}} \sqrt{n_{l}}\left|n_{1} \ldots n_{l}-1 \ldots n_{N}\right\rangle, ~ \$
$$

introducing the creation and annihilation operator a^{\dagger}, a, the above can be rewritten as:

$$
\begin{equation*}
S_{l}^{+}\left|n_{1} \ldots n_{l} \ldots n_{N}\right\rangle=\sqrt{2 S} \sqrt{1-\frac{\hat{n}_{l}}{2 S}} \hat{a}_{l}\left|n_{1} \ldots n_{l} \ldots n_{N}\right\rangle \equiv \sqrt{2 S} \phi\left(\hat{n}_{l}\right) \hat{a}_{l} \tag{2.10}
\end{equation*}
$$

where I have used $\boldsymbol{\bullet}$ to emphasize an operator. Hence we have the first Holstein-Primakoff transformation:

$$
\begin{equation*}
S_{l}^{+}=\sqrt{2 S} \phi\left(\hat{n}_{l}\right) \hat{a}_{l} \tag{2.11}
\end{equation*}
$$

The mapping of S_{l}^{-}can be derived in the same way.

2.1 HP transformation of Heisenberg ferromagnet

In this section we will apply the symmetric Fourier transform to bosonic operators:

$$
\begin{equation*}
a_{k}=\frac{1}{\sqrt{N}} \sum_{i} e^{-i k R_{i}} a_{i}, \quad a_{k}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{i} e^{i k R_{i}} a_{i}^{\dagger} \tag{2.12}
\end{equation*}
$$

they can be interpreted as magnon annihilation or creation operators. Now we rewrite the Heisenberg Hamiltonian by bosons:

$$
\begin{gather*}
S_{i}^{+} S_{j}^{-}=\left(\sqrt{2 S} \phi\left(n_{i}\right) a_{i}\right)\left(\sqrt{2 S} a_{j}^{\dagger} \phi\left(n_{j}\right)\right)=2 S \phi\left(n_{i}\right) a_{i} a_{j}^{\dagger} \phi\left(n_{j}\right) \tag{2.13}\\
S_{i}^{z} S_{j}^{z}=\left(S-n_{i}\right)\left(S-n_{j}\right)=S^{2}+n_{i} n_{j}-S\left(n_{i}+n_{j}\right) \tag{2.14}
\end{gather*}
$$

Note that:

$$
\begin{equation*}
\sum_{i j} J_{i j} S\left(n_{i}+n_{j}\right)=2 S \sum_{i j} J_{i j} n_{j}=2 S \sum_{i} J_{i j} \sum_{j} n_{j}=2 S J(0) \sum_{j} n_{j} \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
S^{2} \sum_{i j} J_{i j}=S^{2} \sum_{i}\left(\sum_{j} J_{i j}\right)=N J(0) S^{2} \tag{2.16}
\end{equation*}
$$

so the Hamiltonian in boson representation is:

$$
\begin{equation*}
H=E_{0}+2 S J(0) \sum_{i} n_{i}-2 S \sum_{i j} J_{i j} \phi\left(n_{i}\right) a_{i} a_{j}^{\dagger} \phi\left(n_{j}\right)-\sum_{i j} J_{i j} n_{i} n_{j} \tag{2.17}
\end{equation*}
$$

To work explicitly with H we have to carry out an expansion of the square root in $\phi\left(n_{i}\right)$:

$$
\begin{equation*}
\phi\left(n_{i}\right)=\sqrt{1-\frac{n_{i}}{2 S}}=1-\frac{n_{i}}{4 S}-\frac{n_{i}^{2}}{32 S^{2}}-O\left(S^{-3}\right) \tag{2.18}
\end{equation*}
$$

The transformation is thus only reasonable when there is a physical justification for terminating the infinite series. The simplest approximation is the spin-wave approximation, where we only keep n_{i} to its lowest (linear) power. This can be justified at low temperatures, at which only a few magnons are excited. To show this, we first approximate:

$$
\phi\left(n_{i}\right) \simeq 1-\frac{n_{i}}{2 S} .
$$

and plug into Hamiltonian and keep the linear only.

$$
\begin{align*}
H & =E_{0}+2 S J(0) \sum_{i} n_{i}-2 S \sum_{i j} J_{i j}\left(1-\frac{n_{i}}{2 S}\right) a_{i} a_{j}^{\dagger}\left(1-\frac{n_{i}}{2 S}\right)-\sum_{i j} J_{i j} n_{i} n_{j} \\
& =E_{0}+2 S J(0) \sum_{i} n_{i}-\sum_{i j} J_{i j}\left(2 S a_{i} a_{j}^{\dagger}-\frac{n_{i}}{2} a_{i} a_{j}^{\dagger}-\frac{a_{i} a_{j}^{\dagger}}{2} n_{j}+\frac{1}{8 S} n_{i} a_{i} a_{j}^{\dagger} n_{j}\right)-\sum_{i j} J_{i j} n_{i} n_{j} \\
& \simeq E_{0}+2 S J(0) \sum_{i j} n_{i} \delta_{i j}-2 S \sum_{i j} J_{i j} a_{i} a_{j}^{\dagger} \\
& =E_{0}+2 S \sum_{i j}\left(J(0) \delta_{i j}-J_{i j}\right) a_{i}^{\dagger} a_{j} \tag{2.19}
\end{align*}
$$

where in the last step we have switch the order of a_{i} and a_{j}^{\dagger} and swapped their indices. This will not introduce the $1=\left[a_{i}, a_{i}^{\dagger}\right]$ since it is mutiplied by $J_{i i}=0$. Then it is readily to diagonalize by a F.T.

$$
\begin{equation*}
H=E_{0}+\sum_{k} \omega(k) a_{k}^{\dagger} a_{k} \tag{2.20}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega(k)=2 S(J(0)-J(k)) \tag{2.21}
\end{equation*}
$$

