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1 Magnons in Heisenberg Model

The Heisenberg interaction is:

Si · Sj =
1

2

(
S+
i S
−
j + S−i S

+
j

)
+ Szi S

z
j (1.1)

The Hamiltonian is:
H = −

∑
i,j

Jij

(
S+
i S
−
j + Szi S

z
j

)
−B

∑
i

Szi (1.2)

where Jij = Jji; Jii = 0, and B = 1
~gJµBB0. Now we move to momentum space by F.T. defined

as:

Sα(k) =
∑
i

e−ikRiSαi

Sαi =
1

N

∑
k

eikRiSα(k)
(1.3)

we did not use the symmetric Fourier coefficient since we want a clean commutation in momentum
space, as derived below:

[S+(k1), S
−(k2)] =

∑
ij

e−ik1Ri−ik2Rj [S+
i , S

−
j ] = 2

∑
ij

e−ik1Ri−ik2RjδijS
z
i

= 2
∑
j

e−i(k1+k2)RjSzj = 2Sz(k1 + k2)
(1.4)

where we have set ~ = 1. Similarly:

[Sz(k1), S
±(k2)] =

∑
ij

e−ik1Ri−ik2Rj [Szi , S
±
j ] = ±

∑
ij

e−ik1Ri−ik2RjδijS
±
i

= ±
∑
j

e−i(k1+k2)RjS±j = ±S±(k1 + k2)
(1.5)

in short:
[S+(k1), S

−(k2)] = 2Sz(k1 + k2), [Sz(k1), S
±(k2)] = ±S±(k1 + k2) (1.6)

and it’s readily to see that: [
S±(k)

]†
= S∓(−k) (1.7)

Now we are going to transform the Hamiltonian to momentum space. Generically what we need is
F{
∑

ij JijS
α
i S

β
j }. By translational symmetry we rewrite this term as:∑

i,j

JijS
α
i S

β
j =

∑
i,r

J(r)Sαi S
β
i+r (1.8)
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expand spin operator in momentum space:

Sαi =
1

N

∑
k

eikRiSα(k)

Sβi+r =
1

N

∑
k

eik(Ri+r)Sβ(k)

(1.9)

Then we have: ∑
i,r

J(r)Sαi S
β
j =

1

N2

∑
r

J(r)
∑
k,k′

eik
′r

(∑
i

ei(k+k
′)Ri

)
Sα(k)Sβ(k′)

=
1

N

∑
r

J(r)
∑
k

e−ikrSα(k)Sβ(−k)

=
1

N

∑
k

(∑
r

J(r)e−ikr

)
Sα(k)Sβ(−k)

≡ 1

N

∑
k

J(k)Sα(k)Sβ(−k)

(1.10)

where we have defined J(k) =
∑

r J(r) exp(−ikr), which satisfies J(k) = J(−k) if it is symmetric
under reflection. Note that another equivalent form is sometimes useful:

J(k) =
1

N

∑
i,j

Jije
−ik(Rj−Ri) (1.11)

there is an additional factor of 1
N due to the repeated counting of identical bonds.

The on-site operator in momentum space is:∑
i

Sαi =
∑
i

1

N

∑
k

Sα(k)eikRi = Sα(0) (1.12)

Therefore the full Hamiltonian in momentum space is:

H = − 1

N

∑
k

J(k)
{
S+(k)S−(−k) + Sz(k)Sz(−k)

}
−BSz(0) (1.13)

Let the ground state be |S〉 that corresponds to an overall parallel orientation of all the spins, i.e.
a product state with local magnetization S. Hence:

Szi |S〉 = S |S〉 , Sz(k) =
∑
i

eikRiSzi |S〉 = NS |S〉 δk,0 (1.14)

S+
i |S〉 = 0, S+(k) |S〉 =

∑
i

eikRiS+
i |S〉 = 0 (1.15)

Now let’s calculate the eigen energy. By Eq.(1.6) the first term in Hamiltonian gives:

− 1

N

∑
k

J(k)S+(k)S−(k) |S〉 = − 1

N

∑
k

J(k)
[
S−(−k)S+(k) + 2Sz(0)

]
|S〉

= − 1

N

(∑
k

J(k)

)
2NS |S〉

= − 1

N
NJ(r = 0)NS |S〉 = 0

(1.16)
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where at the 3rd row we used
∑

k e
−ikr = Nδr,0. While the 2nd term of Hamiltonian gives:

− 1

N

∑
k

J(k)Sz(k)Sz(−k) |S〉 = − 1

N

∑
k

J(k)Sz(−k)NSδk,0 |S〉

= −SJ(0)Sz(0) |S〉
= −NJ(0)S2 |S〉

(1.17)

The zeeman term is trivial. Hence we have the eigen equation:

H |S〉 = E0 |S〉
E0 = −NJ(0)S2 −NSB

(1.18)

where E0 is the ground state energy.
Next we show that

|k〉 ≡ S−(k) |S〉 (1.19)

is also an eigenstate of H. It’s convenient to first look at the commutation [H,S−(k)]:

[H,S−(k)] =− 1

N

∑
p

J(p)
{

[S+(p), S−(k)]S−(−p) + Sz(p)[Sz(−p), S−(k)] + [Sz(p), S−(k)]Sz(−p)
}

−B[Sz(0), S−(k)]

=− 1

N

∑
p

J(p)
{

2Sz(k + p)S−(−p)− Sz(p)S−(k − p)− S−(k + p)Sz(−p)
}

+BS−(k)

(1.20)

recall that:

[Sz(k1), S
±(k2)] = ±S±(k1 + k2)

⇒ 2Sz(k + p)S−(−p) = −2S−(k) + 2S−(−p)Sz(k + p)

& Sz(p)S−(k − p) = S−(k − p)Sz(p)− S−(k)

(1.21)

we replace the 1st and 2nd term in Eq.(1.20) by the above, hence:

[H,S−(k)] =BS−(k)− 1

N

∑
p

J(p)
{
−2S−(k) + 2S−(−p)Sz(k + p)+

+ S−(k)− S−(k − p)Sz(p)− S−(k + p)Sz(−p))
} (1.22)

Note that
∑

p J(p) = NJ(r = 0) = 0, so the 1st and 3rd terms in the summation evaluate to zero.
We finally find:

[
H,S−(k)

]
= BS−(k)− 1

N

∑
p

J(p)
{

2S−(−p)Sz(k + p)− S−(k − p)Sz(p)− S−(k + p)Sz(−p)
}

(1.23)
Then it’s readily to apply this commutator to |S〉 and extract dispersion:

[H,S−(k)] |S〉 = ω(k)
[
S−(k) |S〉

]
(1.24)

ω(k) = B + 2S [J(0)− J(k)] (1.25)
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in which we have used J(k) = J(−k). Hence the eigen energy of state S−(k) |S〉 is:

H
(
S−(k) |S〉

)
=
(
E0 + ω(k)

)
|S〉 ≡ E(k)

(
S−(k) |S〉

)
(1.26)

where we have defined the totol energy:

E(k) = E0 +B + 2S[J(0)− J(k)] (1.27)

Now we normalize the excitation:

〈S|(S−(k))†S−(k)|S〉 = 〈S|S+(−k)S−(k)|S〉
= 〈S|2Sz(0) + S−(k)S+(−k)|S〉
= 2NS

(1.28)

Therefore the Normalized single-magnon state is:

|k〉 =
1√

2NS
S−(k) |S〉 (1.29)

One can check [Wolfgang] which shows that magnons are bosons and carry spin-1 in a spin-1/2
system.

2 Holstein-Primakoff transformation

To arrive at an approximate solution that does not use unwieldy spin operators, we would like
to a representation that uses creation and annihilation operators in the second quantization. The
transformation read:

S+
i =

√
2S φ(ni) ai

S−i =
√

2S a†i φ(ni)

Szi = S − ni

(2.1)

where we have defined:

ni = a†iai

φ(ni) =

√
1− ni

2S

(2.2)

where a, a† are bosonic operators. Before going to the implemetation, let us first have a review of
its historical derivation. The building blocks of a spin Hamiltonian are:

S+
j = Sxj + iSyj , S−j = Sxj − iS

y
j , n̂j = S − Szj (2.3)

with nj the eigenvalue of n̂j , which is called the spin deviation of j-th site. For simplicity, let us
consider the case in which Szj , thus nl, is a good quantum number, such that the wavefunction can
be labelled by local spin deviations:

|ψ〉 = |n1 . . . nl . . . nN 〉 (2.4)
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Now let us apply these operators to the state. The operator S+
l will raise Szl , thus lower nl by 1.

So we have:
S+
l |n1 . . . nl . . . nN 〉 = c |n1 . . . nl − 1 . . . nN 〉 (2.5)

it has to satisfy normalization condition:

|c|2 = 〈n1 . . . nl . . . nN |S−l S
+
l |n1 . . . nl . . . nN 〉 (2.6)

in order to work under nl basis, we rewrite the S−l S
+
l as:

S−l S
+
l = (Sxl − iS

y
l )(Sxl + iSyl ) = Sxl S

x
l + Syl S

y
l + iSxl S

y
l − iS

y
l S

x
l

= S2 − Szl Szl + i[Sxl , S
y
l ] = S(S + 1)− (S − nl)2 − (S − nl)

= 2Snl − nl(nl − 1)

= (2S)

(
1− nl − 1

2S

)
nl

(2.7)

so that

c =
√

2S

√
1− nl − 1

2S

√
nl (2.8)

S+
l |n1 . . . nl . . . nN 〉 =

√
2S

√
1− nl − 1

2S

√
nl |n1 . . . nl − 1 . . . nN 〉 (2.9)

introducing the creation and annihilation operator a†, a, the above can be rewritten as:

S+
l |n1 . . . nl . . . nN 〉 =

√
2S

√
1− n̂l

2S
âl |n1 . . . nl . . . nN 〉 ≡

√
2S φ(n̂l) âl (2.10)

where I have used •̂ to emphasize an operator. Hence we have the first Holstein-Primakoff trans-
formation:

S+
l =

√
2S φ(n̂l) âl (2.11)

The mapping of S−l can be derived in the same way.

2.1 HP transformation of Heisenberg ferromagnet

In this section we will apply the symmetric Fourier transform to bosonic operators:

ak =
1√
N

∑
i

e−ikRiai, a†k =
1√
N

∑
i

eikRia†i (2.12)

they can be interpreted as magnon annihilation or creation operators. Now we rewrite the Heisen-
berg Hamiltonian by bosons:

S+
i S
−
j =

(√
2Sφ(ni)ai

)(√
2Sa†jφ(nj)

)
= 2Sφ(ni)aia

†
jφ(nj) (2.13)

Szi S
z
j = (S − ni) (S − nj) = S2 + ninj − S(ni + nj) (2.14)

Note that: ∑
ij

JijS(ni + nj) = 2S
∑
ij

Jijnj = 2S
∑
i

Jij
∑
j

nj = 2SJ(0)
∑
j

nj (2.15)
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S2
∑
ij

Jij = S2
∑
i

∑
j

Jij

 = NJ(0)S2 (2.16)

so the Hamiltonian in boson representation is:

H = E0 + 2SJ(0)
∑
i

ni − 2S
∑
ij

Jijφ(ni)aia
†
jφ(nj)−

∑
ij

Jijninj (2.17)

To work explicitly with H we have to carry out an expansion of the square root in φ(ni):

φ(ni) =

√
1− ni

2S
= 1− ni

4S
− n2i

32S2
−O(S−3) (2.18)

The transformation is thus only reasonable when there is a physical justification for terminating
the infinite series. The simplest approximation is the spin-wave approximation, where we only keep
ni to its lowest (linear) power. This can be justified at low temperatures, at which only a few
magnons are excited. To show this, we first approximate:

φ(ni) ' 1− ni
2S
.

and plug into Hamiltonian and keep the linear only.

H = E0 + 2SJ(0)
∑
i

ni − 2S
∑
ij

Jij

(
1− ni

2S

)
aia
†
j

(
1− ni

2S

)
−
∑
ij

Jijninj

= E0 + 2SJ(0)
∑
i

ni −
∑
ij

Jij

(
2Saia

†
j −

ni
2
aia
†
j −

aia
†
j

2
nj +

1

8S
niaia

†
jnj

)
−
∑
ij

Jijninj

' E0 + 2SJ(0)
∑
ij

niδij − 2S
∑
ij

Jijaia
†
j

= E0 + 2S
∑
ij

(J(0)δij − Jij) a†iaj

(2.19)

where in the last step we have switch the order of ai and a†j and swapped their indices. This will

not introduce the 1 = [ai, a
†
i ] since it is mutiplied by Jii = 0. Then it is readily to diagonalize by a

F.T.
H = E0 +

∑
k

ω(k)a†kak (2.20)

with
ω(k) = 2S (J(0)− J(k)) (2.21)
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