Notes on RBM

Shi Feng

September 23, 2022

$1 \quad \mathrm{RBM}[1]$

A RBM is a bipartite binary probabilistic graphical model corresponding to the following distribution,

$$
\begin{equation*}
p(v, h)=\frac{1}{Z} \exp [-E(v, h)] \tag{1}
\end{equation*}
$$

which assigns a probability to every possible pair of a visible (v) and a hidden vector (h) via this energy function energy function:

$$
\begin{equation*}
E(v, h)=-\sum_{i \in \text { visible }} a_{i} v_{i}-\sum_{j \in \text { hidden }} b_{j} h_{j}-\sum_{i, j} w_{i j} v_{i} h_{j} \tag{2}
\end{equation*}
$$

The probability of v or h is given by a marginalization:

$$
\begin{equation*}
p(v)=\frac{1}{Z} \sum_{h} \exp [-E(v, h)], \quad p(h)=\frac{1}{Z} \sum_{v} \exp [-E(v, h)] \tag{3}
\end{equation*}
$$

The derivation of the \log probability w.r.t. $w_{i j}$ is:

$$
\begin{align*}
\frac{\partial \log p(v)}{\partial w_{i j}} & =\frac{1}{p(v)}\left(-\frac{1}{Z^{2}} \frac{\partial Z}{\partial w_{i j}}\right) \sum_{h} e^{-E(v, h)}+\frac{1}{p(v)} \sum_{h} v_{i} h_{j} \frac{e^{-E(v, h)}}{Z} \\
& =-\frac{1}{p(v)}\left(\sum_{h, v} v_{i} h_{j} \frac{e^{-E(v, h)}}{Z}\right)\left(\sum_{h} \frac{e^{-E(v, h)}}{Z}\right)+\sum_{h} v_{i} h_{j} \frac{p(v, h)}{p(v)} \tag{4}\\
& =-\sum_{h, v} v_{i} h_{j} p(v, h)+\sum_{h} v_{i} h_{j} p(h \mid v) \\
& =-\mathbb{E}_{\text {model }}\left[v_{i} h_{j}\right]+\mathbb{E}_{\text {data }}\left[v_{i} h_{j}\right]
\end{align*}
$$

this leads to the gradient ascent learning rule of $w_{i j}$:

$$
\begin{equation*}
\delta w_{i j}=\beta\left(\mathbb{E}_{\text {data }}\left[v_{i} h_{j}\right]-\mathbb{E}_{\text {model }}\left[v_{i} h_{j}\right]\right) \tag{5}
\end{equation*}
$$

and by the same token we can derive the updating process for a_{i} and b_{j} :

$$
\begin{align*}
& \delta a_{i}=\beta\left(\mathbb{E}_{\text {data }}\left[v_{i}\right]-\mathbb{E}_{\text {model }}\left[v_{i}\right]\right) \\
& \delta b_{j}=\beta\left(\mathbb{E}_{\text {data }}\left[h_{j}\right]-\mathbb{E}_{\text {model }}\left[h_{j}\right]\right) \tag{6}
\end{align*}
$$

where β is the learning rate.

Now we need to figure out how to calculate the relevant expectation values mentioned above. We start with the conditional expectation $\mathbb{E}_{\text {data }}\left[v_{i} h_{j}\right]$. The key is to sample the probability $p(h \mid v)$. We can easily write down the conditional probability:

$$
\begin{equation*}
p(h \mid v)=\frac{p(h, v)}{p(v)}=\frac{\frac{1}{Z} e^{-E(v, h)}}{\frac{1}{Z} \sum_{h} e^{-E(v, h)}}=\frac{e^{-E(v, h)}}{\sum_{h} e^{-E(v, h)}} \tag{7}
\end{equation*}
$$

and conditional probability for a single hidden node h_{j} can be derived by marginalization:

$$
\begin{equation*}
p\left(h_{j} \mid v\right)=\sum_{\left\{h_{k}\right\}-h_{j}} p\left(\left\{h_{k}\right\} \mid v\right)=\frac{\sum_{\left\{h_{k}\right\}-h_{j}} e^{-E(v, h)}}{\sum_{h} e^{-E(v, h)}} \tag{8}
\end{equation*}
$$

For convenience we rewrite the energy function in the following form which separates the hidden and the visible nodes:

$$
\begin{equation*}
E(v, h)=-\sum_{j \in \text { hidden }}\left[h_{j}\left(b_{j}+\sum_{i \in \text { visible }} w_{i j} v_{i}\right)\right]-\sum_{i \in \text { visible }} a_{i} v_{i} \equiv-\sum_{j} \gamma_{j}(v) h_{j}-\sum_{i} a_{i} v_{i} \tag{9}
\end{equation*}
$$

so the the Boltzmann factor in the numerator now takes the form:

$$
\begin{equation*}
\exp [-E(v, h)]=\prod_{i} e^{-a_{i} v_{i}} \prod_{j} e^{-\gamma_{j}(v) h_{j}} \tag{10}
\end{equation*}
$$

Therefore the denomiator in Eq. 8 can be written as

$$
\sum_{h} e^{-E(v, h)}=\prod_{i} e^{-a_{i} v_{i}} \sum_{h} \prod_{k} e^{-\gamma_{k}(v) h_{k}}=\left[\prod_{i} e^{-a_{i} v_{i}}\right]\left[\sum_{h_{j}=\{0,1\}} e^{-\gamma_{j}(v) h_{j}}\right]\left[\sum_{\left\{h_{k}\right\}-h_{j}} \prod_{k \neq j} e^{-\gamma_{k}(v) h_{k}}\right]
$$

and the numerator:

$$
\sum_{\left\{h_{k}\right\}-h_{j}} e^{-E(v, h)}=e^{-\gamma_{j}(v) h_{j}}\left[\prod_{i} e^{-a_{i} v_{i}}\right]\left[\sum_{\left\{h_{k}\right\}-h_{j}} \prod_{k \neq j} e^{-\gamma_{k}(v) h_{k}}\right]
$$

hence Eq. 8 becomes a Logistic form:

$$
\begin{equation*}
p\left(h_{j} \mid v\right)=\frac{e^{-\gamma_{j}(v) h_{j}}}{1+e^{-\gamma_{j}(v)}} \tag{11}
\end{equation*}
$$

Since each element in h_{j} is binary, we can readily write down the conditional probability for $h_{j}=1,0$ conditioned on v :

$$
\begin{gather*}
p\left(h_{j}=1 \mid v\right)=\frac{\exp \left(-b_{j}-\sum_{i} w_{i j} v_{i}\right)}{1+\exp \left(-b_{j}-\sum_{i} w_{i j} v_{i}\right)}=\sigma\left(b_{j}+\sum_{i} w_{i j} v_{i}\right) \tag{12}\\
p\left(h_{j}=0 \mid v\right)=1-p\left(h_{j}=1 \mid v\right)=\frac{1}{1+\exp \left(-b_{j}-\sum_{i} w_{i j} v_{i}\right)} \tag{13}
\end{gather*}
$$

By the same token we can show $p\left(v_{i} \mid h\right)$ is also a similar sigmoid function:

$$
\begin{equation*}
p\left(v_{i}=1 \mid h\right)=\sigma\left(a_{i}+\sum_{j} w_{i j} h_{j}\right) \tag{14}
\end{equation*}
$$

```
Algorithm 1 Sampling \(\mathbb{E}_{\text {data }}\left[v_{i} h_{j}\right]\)
Input: Data batch \(\left(v_{1}, \cdots, v_{N}\right)\) and initial parameters of RBM
Output: \(\mathbb{E}_{\text {data }}\left[v_{i} h_{j}\right]\)
1. Initialize the \(\mathbf{M}=0\) matrix
2. For each \(v_{t}\) in data batch:
    Sample \(h \sim p\left(h \mid v_{t}\right)=\sigma\left(\mathbf{b}+\mathbf{w}^{\top} v\right)\)
    \(\mathbf{M} \leftarrow \mathbf{M}+v_{t} h^{\top}\)
3. \(\mathbb{E}_{\text {data }}\left[v h^{\top}\right] \leftarrow \mathbf{M} / N\)
```

```
Algorithm 2 Sampling \(\mathbb{E}_{\text {model }}\left[v_{i} h_{j}\right]\)
Input: Initial parameters of RBM
Output: \(\mathbb{E}_{\text {model }}\left[v_{i} h_{j}\right]\)
1. Initialize the \(\mathbf{M}=0\) matrix
2. Initialize \(v\) to be a random vector
3. Repeat \(N_{c}\) times (until convergence):
    Sample \(h \sim p(h \mid v)=\sigma\left(\mathbf{b}+\mathbf{w}^{\top} v\right)\)
    Sample \(v \sim p(v \mid h)=\sigma(\mathbf{a}+\mathbf{w} h)\)
    \(\mathbf{M} \leftarrow \mathbf{M}+v h^{\top}\)
3. \(\mathbb{E}_{\text {model }}\left[v h^{\top}\right] \leftarrow \mathbf{M} / N_{c}\)
```

We are now prepared to sample calculate $\mathbb{E}_{\text {data }}\left[v_{i} h_{j}\right]=\sum_{h} v_{i} h_{j} p(h \mid v)$ for every pair of i and j.
Next we need to compute $\mathbb{E}_{\text {model }}\left[v_{i} h_{j}\right]=\sum_{v, h} v_{i} h_{j}$, which is significantly harder since we are drawing correlated samples. Nevertheless, note that elements in v or h are not correlated within the same layer, so, assuming convergence is achievable, we can write down a similar algorithm sampling the hidden and visible layer one after another:

However, this scheme usually converges very slowly since samples of h and v are correlated. This is exactly where the contrastive divergence (CD) has a part to play. This can simply be done by setting $N_{c}=n$ for CD_{n}, where n is common chosen to be $n=1$.

References

[1] Hinton, G. E. A practical guide to training restricted boltzmann machines. In Neural networks: Tricks of the trade, 599-619 (Springer, 2012).

