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1 Noether theorem in classical mechanics

1.1 Symmetry

In classical mechanics, the action S[qi(t)] is defined as the integral of lagrangian:

S[qi(t)] =

∫
dt L(qi, q̇i, t) (1.1)

The crucial concept exploited by Noether is that of an action symmetry, for example, define an
action:

S[x(t), y(t), z(t)] =

∫
dt
(
(ẋ2 + ẏ2 + ż2)−H0z

)
(1.2)

with H0 a constant. This action is clearly invariant under constant translations in x(t) and y(t),
i.e.

S[x(t) + x0, y(t) + y0, z(t)] = S[x(t), y(t), z(t)] (1.3)

The important aspect of this equation is that is holds for all trajectories x(t), y(t), z(t). Note
t here should be viewed as a dummy index like a coordinate frame, and x(t), · · · as a field or
configuration defined on that frame.

There can be more complicated forms of symmetry. For example, let qi be a set of generalized
coordinates. For an action S[qi(t)], a set of functions f i(t) is a symmetry if S[qi(t)+f i(t)] = S[qi(t)]
for all qi(t). In other words, Symmetries are directions in the space spanned by the qi’s on which
the action does not change.

For Noether’s theorem one is interested in infinitesimal symmetries. The functions f i(t)
in the example above will be denoted as f i(t) ≡ δsq

i(t) (s for symmetry), and S[qi(t) + δsq
i(t)] is

spanned to first order. It is important to note that qi(t) and δqi(t) are totally independent
functions.

So far we have mentioned the strong version of a symmetry where the action is strictly invariant.
Noether’s theorem accepts a weaker version. This weaker version of symmetry is defined as
a function δsq

i(t) such that, for any qi(t) (meaning for any i and any t-dependent trajectory), the
action is invariant up to a boundary term K:

δS[qi(t), δsq
i(t)] ≡ S[qi(t) + δsq

i(t)]− S[qi(t)] =

∫
dK

dt
dt (1.4)

which is a function of both the configuration qi(t) and the symmetry δsq
i(t). By analogy, this can

be simply perceived as defining a variation as f(x+ dx)− f(x) = f ′(x)dx ≡ df(x, dx) and relabel
d by δ.
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Example 1.1 (Rotational symmetry). The action of a point particle that feels a central force is:

S[~r(t)] =

∫
dt
(m

2
~̇r2(t)− V (r)

)
(1.5)

It’s readily to see the ratational invariance since ~rTRTR~r = ~r2. So it is also true for an infinifesimal
rotation ~α. For small angle this can be written as

~r′(t) = ~r(t) + ~α× ~r(t) (1.6)

hence
δs~r(t) = ~α× ~r (1.7)

with direction of α penpendicular to the manifold spanned by ~r (e.g. for xy plane, α point into z
direction. See appendix for details). Now let us work out what is the boundary term of δS. V (r)
only depend on length of r hence rotation will leave it invariant. The kinetic term can be expanded
into:

~̇r2 = ~̇r · ~̇r → (~̇r + ~α× ~̇r) · (~̇r + ~α× ~̇r) = ~̇r2 + (~α× ~̇r) · ~̇r + ~̇r · (~α× ~̇r) + (~α× ~̇r) · (~α× ~̇r) (1.8)

clearly the 2nd and 3rd term vanishes since they are dot products of orthogonal vectors. The last
term also vanish since it involves O(α2). The action is then invariant and without boundary term,
thus we must have K = 0.

Example 1.2 (Time translation). Again we start from the action of a point particle under a central
force:

S[~r(t)] =

∫
dt
(m

2
~̇r2(t)− V (r)

)
(1.9)

but with a different symmetry operation:

δs~r(t) = −ε~̇r(t) (1.10)

with ε a small constant. This is essentially a time translation in the following sense:

r(t−∆t) = r(t)− ṙ(t)∆t+O(∆t2) ⇒ r(t−∆t)− r(t) ≈ −ṙ(t) (1.11)

The kinetic term of Lagrangian then changes by:

(~̇r + δs~̇r) · (~̇r + δs~̇r)− ~̇r2 = 2~̇r · δs~̇r = −2ε~̇r · ~̈r (1.12)

and V (r) changes by ∇V (r) · ~̇r. So the change in action is

δS[~r, δs~r] =

∫
dt ε

(
−m~̇r · ~̈r +∇V · ~̇r

)
=

∫
dt
d

dt

(
−εm

2
~̇r + εV (~r)

) (1.13)

so the boundary term is

K = −εm
2
~̇r + εV (~r) (1.14)
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1.2 On-shell variations

The on-shell variation is another type of variation compared to the previous variation according to
a defined operation. For symmetries, the variations δsq

i(t) are constrained to satisfy an equation,
while the “fields” qi(t) are totally arbitrary. For on-shell variations, the fields qi(t) are
constrained to satisfy their Euler-Lagrange equations while the variations δqi(t) are
arbitrary.

Let δqi(t) be an arbitrary infinitesimal deformation of the variable qi(t). Then, for an action of
the form S[q] =

∫
dtL(q, q̇) the variation δS[q] = S[q + δq]− S[q] can be written as

δS[qi, δqi] =

∫
dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δqi
)

=

∫
dt

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi +

∫
dt
d

dt

(
∂L

∂q̇i
δqi
) (1.15)

If qi(t) = q̄i(t) satisfies its Euler-Lagrange equations, the bulk contribution vanishes and the vari-
ation is a total derivative:

δS[q̄i(t), δqi(t)] = S[q̄i(t) + δqi(t)]− S[q̄i(t)] =

∫
dt
d

dt

(
∂L

∂q̇i
δqi
)

(1.16)

1.3 Noether’s First theorem

The combination of a symmetry with an on-shell variation gives rise to Noether theorem. Recall
that a symmetry is defined by:

δS[qi(t), δsq
i(t)] =

∫
dt
dK

dt
(1.17)

and an on-shell variation is defined by

δS[q̄i(t), δqti ] =

∫
dt
d

dt

(
∂L

∂q̇i
δqi
)

(1.18)

It is important to point out that, the two variations are from different origins: Eq.(1.17) says qi(t)
is arbitrary but δsq

i(t) is constrained to satisfy some action symmetry, Eq.(1.18) says the field q̄i(t)
is fixed to satisfy Euler-Larange eqaution but δqi(t) is arbitrary.

Since Eq.(1.17) has no constraint on field qi(t), we have the freedom to chose qi(t) = q̄i(t), and
get

δS[q̄i(t), δsq
i(t)] =

∫
dt
dK

dt
(1.19)

and since Eq.(1.18) has no constraint on variation δqi(t), we have the freedom to chose δqi(t) =
δsq

i(t), and get

δS[q̄i(t), δsq
t
i ] =

∫
dt
d

dt

(
∂L

∂q̇i
δqi
)

(1.20)

Subtracting one from the other, we have

d

dt

(
K − ∂L

∂q̇i
δsq

i

)
= 0 (1.21)

Hence if we define

Q ≡ K − ∂L

∂q̇i
δsq

i (1.22)

then it must be a conserved quantity since dQ/dt = 0. This is Noether’s First theorem: Given a
variation of symmetry δsq

i(t), Q ≡ K − ∂L
∂q̇i
δsq

i is conserved.
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Example 1.3 (Conservation of angular momentum). As discussed in previous section, the bound-
ary term of rotational symmetry is K = 0. Hence the conserved change w.r.t to ~α is

Qα = − ∂L
∂q̇i

δsq
i = −m~̇r · δs~r = −m~̇r · (~α× ~r) = −~α×

(
m~r × ~̇r

)
(1.23)

note here qi = x, y, z. Since ~α is an arbitrary c-number, angular momentum ~L = m~r × ~̇r must be
conserved.

Example 1.4 (Conservation of energy). Recall from previous section that the boundary term from
time translation reads

K = −εm
2
~̇r2 + εV (~r) (1.24)

and from Lagrangian L = (m/2)ṙ2 − V (r) we have

∂L

∂q̇i
δsq

i = m~̇r · (−ε~̇r) = −εm~̇r2 (1.25)

so we have
Q =

m

2
~̇r2 + V (~r) ≡ E (1.26)

Example 1.5 (The conformal particle). In this example we will see how one can solve the equation
of motion without even having to write them down. Just by looking at the symmetries and making
use of Noether’s theorem, one can completely integrate the dynamics.

Consider a particle of mass m under the influence of an inverse quadratic potential:

S[x] =

∫
dt

(
1

2
mẋ2 − α

x2

)
(1.27)

This action satisfies the Weyl symmetry:

t→ t′ = λt (1.28)

x→ x′(t′) =
√
λx(t) (1.29)

for constant λ. Now let us check this is an action symmetry. Under this transormation we have

ẋ =
dx

dt
→ ẋ′ =

d
√
λx

d(λt)
=

1√
λ
ẋ (1.30)

then it’s trivial to see the S[x′] = S[x]. Note here we only verified the existence of such symmetry,
but we don’t yet know whether K = 0 or K 6= 0, since we haven’t yet write down how S changes
under infinitesimal variation. To do this, let λ = 1 + ε and expand the transformation into:

x(t)→ x′(t′) = x′((1 + ε)t) =
√

1 + ε x(t) ≈
(

1 +
ε

2

)
x(t) (1.31)

and the LHS can be expand to linear order as

x′((1 + ε)t) = x′(t) +
dx′

dt
εt ≈ x′(t) + ẋ(t)εt (1.32)

where we have used a result that follows Eq.(1.30) and ignored O(ε2):

dx′

dt
=
dx′

dt′
(1 + ε) =

√
1 + ε

dx

dt
≈
(

1 +
ε

2

)
ẋ (1.33)
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Hence by comparing Eq.(1.32) and Eq.(1.31) the variation can be written as

δsx(t) = x′(t)− x(t) = −εtẋ+
ε

2
x (1.34)

In order to apply this to action, we need first calculate how each term of integrand changes
under such variation. The ẋ2 term becomes

ẋ2 →
(
d

dt
(x+ δsx)

)2

=

[
ẋ+

d

dt
(−εtẋ+

ε

2
x)

]2
≈ ẋ2 − ε

(
tẋẍ+

1

2
ẋ2
)

(1.35)

so that

δ(ẋ2) = −ε
(
tẋẍ+

1

2
ẋ2
)

(1.36)

By the same token, the δ(1/x2) term gives:

δ

(
1

x2

)
=

1

(x+ δsx)2
− 1

x2
≈ 1

x2 + 2x δsx
− 1

x2

=
x2 − x2 − 2x δsx

x2(x2 + 2x δsx)
=

−2δsx

x3 + 2x2δsx
=

1

x3
−2δsx

1 + (2δsx/x)

=
−2δsx

x3

(
1− 2δsx

x
+O(δsx

2)

)
≈ −2δsx

x3
= ε

2tẋ− x
x3

(1.37)

it is clear now that δ can indeed be treated like a usual differential d. Now we are ready to evalulate
the boundary term:

δS[x] =

∫
dt

(
m

2
δ
(
ẋ2
)
− αδ

(
1

x2

))
= ε

∫
dt

[
−m

(
1

2
ẋ2 + tẋẍ

)
+ α

x− 2tẋ

x3

]
= ε

∫
dt
d

dt

[
−m

(
tẋ2

2

)
+
αt

x2

] (1.38)

thus we define:

K ≡ −m
2
tẋ2 +

αt

x2
(1.39)

Then it is readily to derive Q

2 Noether’s theorem in Hamiltonian mechanics

3 Symmetries act on fields

3.1 Spacetime translation

Spacetime translations xµ → x′µ = xµ + εµ are understood as a transformation of the field as
follows: Given φ(x), we can build a new field φ′(x′) supported on x′ = x+ ε. The new and the old
are necessarily related by

φ(x)→ φ′(x+ ε) = φ(x) (3.1)
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This is generically true for all x under such translation. Substituting x−ε for x gives us the desired
form (since we are interested in how the new field looks like in the original fixed coordinate):

φ′(x) = φ(x− ε) (3.2)

Then by expanding to 1st order of ε we have

φ′(x) = φ(x− ε) ' φ(x)− εµ∂µφ(x) (3.3)

Therefore the variation of the field by spacetime translation x′ = x+ ε is

δφ(x) = −εµ∂µφ(x) (3.4)

For the simplest scalar field

I[φ(x)] =
1

2

∫
d4x ∂µφ∂

µφ (3.5)

its variation under spacetime translation is

δI[φ] =
1

2

∫
d4x∂µ[φ− εν∂νφ]∂µ[φ− εν∂νφ]− 1

2

∫
d4x ∂µφ∂

µφ

=
1

2

∫
d4x ∂µφ∂

µ(−εν∂νφ) +
1

2

∫
d4x ∂µ(−εν∂νφ)∂µφ

=

∫
d4x ∂µφ∂

µ(−εν∂νφ)

= −1

2

∫
d4x ∂ν(εν∂µφ∂

µφ)

(3.6)

where we ignored O(ε2). So δI[φ] is only a boudary term
Note that any potential term U(φ) that does not explicitly depend on x does not spoil the

aforesaid symmetry, because:

δU = U(φ+ δφ)− U(φ) =
dU(φ)

dφ
δφ = −U ′(φ)εµ∂µφ = −∂µ(εµU) (3.7)

which again is only a boundary term.

3.2 Lorentzian boost

An arbitrary Lorentz transformation is

xµ → x′µ = Λµνx
ν (3.8)

Again we can define a new field φ′(x′) which is related by

φ′(Λµνx
ν) = φ(x) (3.9)

Now we substitute x = Λ−1x and we have

φ′(x) = φ(Λ−1x) (3.10)

By the chain rule, the derivative of the field ∂µφ(x) is transformed as:

∂µφ(x)→ ∂µφ
′(x) = ∂µφ(Λ−1x) =

(
∂(Λ−1)νρx

ρ

∂xµ

)
(∂νφ)(Λ−1x) = (Λ−1)νµ(∂νφ)(Λ−1x) (3.11)
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note that it is only the field that is considered to have changed during the boost, thus ∂µ remains
the same. The second order derivative is

∂µ∂
µ =

[
(Λ−1)νµ∂ν

] [
(Λ−1)σλ∂σ

]
gλµ

=
[
(Λ−1)νµ(Λ−1)σλg

λµ
]
∂ν∂σ = gσν∂ν∂σ = ∂σ∂

σ
(3.12)

where we used the identity:
(Λ−1)ρµ(Λ−1)σνg

µν = gρσ (3.13)

so the ∂µ∂
µ is Lorentzian invariant.

Example 3.1. Show that
S = (∂tψ)(∂tφ) (3.14)

is Lorentzian invariant.

Proof. According to Eq.3.11 we have

S → S′ = ∂0ψ(Λ−1x) · ∂0φ(Λ−1x)

= (Λ−1)ν0(Λ−1)µ0 (∂νψ)(∂µφ)(Λ−1x) = (∂0ψ)(∂0φ)(Λ−1x)
(3.15)

since Λν0 = Λν0δ0,ν

conserved quantity

3.3 Conserved current and conserved charge

For a d-dimensional theory the action reads in general

I[φ(x)] =

∫
ddx L(φ, ∂µφ) (3.16)

which corresponds to the Euler-Lagrange equation:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (3.17)

The on-shell variation is computed as

δI[φ̄, δφ] =

∫
ddx

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

)
=

∫
ddx

([
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφ

)
+

∫
ddx ∂µ

(
∂L

∂(∂µφ)
δφ

)
=

∫
ddx ∂µ

(
∂L

∂(∂µφ)
δφ

)
= δI[φ̄, δsφ]

(3.18)

and the symmetry variation is

δI[φ, δsφ] =

∫
ddx ∂µK

µ = δI[φ̄, δsφ] (3.19)

by the two equations we have the conserved current equation:

∂µJ
µ = 0, Jµ ≡ ∂L

∂(∂µφ)
δsφ(x)−Kµ (3.20)
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To the the conserved charge explicitly, we split the spacial and temporal part of conserved current:

∂tJ
0 = −∇ · ~J (3.21)

Integrating both sides of this equation and using the divergence theorem∫
V
dd−1x ∂tJ

0 = −
∫
dd−1x ∇ · ~J = −

∫
∂V

~J · ~S (3.22)

If the container V is large enough (and assuming field configurations such that ~J drops to zero
faster than the growth of the surface area) the last integral vanishes, yielding the conserved charge

dQ

dt
= 0, Q =

∫
V
dd−1x J0(x) (3.23)

Actually, this widespread phrase that “fields fall off sufficiently rapidly at infinity” will turn out to
be false in gauge theories.

3.4 U(1) symmetry

Consider the complex scalar field theory:

I[ψ(x), ψ†(x)] =

∫
d4x

[
(∂µψ)†∂µψ − V (ψ†ψ)

]
(3.24)

Assuming V (ψ†ψ) = mψ†ψ, the equation of motions are then given by the Klein-Gordon equation

(∂2 +m2)ψ = 0, (∂2 +m2)ψ† = 0 (3.25)

Obviouly the action is invariant under U(1) transformation:

ψ → ψ′ = e−iαψ, ψ† → ψ′† = eiαψ† (3.26)

where α is a global constant, making the transformation a global U(1) operation. The infinitesmal
generator of the U(1) transformation is

ψ → ψ′ = e−iαψ ≈ ψ − iαψ, ψ† ≈ ψ† + iαψ† (3.27)

The on-shell variation gives

∂L
∂(∂µψ)

δsψ = (∂µψ)†δsψ = −iαψ∂µψ† (3.28)

∂L
∂(∂µψ†)

δsψ
† = (∂µψ)δsψ

† = iαψ†∂µψ (3.29)

The symmetry variation gives zero because in the transformed field the Lagrangian takes the same
form:

V [(ψ† + iαψ†)(ψ − iαψ)] = V [ψ†ψ + iαψ†ψ − iαψψ† +O(α2)] ≈ V (ψ†ψ) (3.30)

∂µ(ψ − iαψ)∂µ(ψ† + iαψ†) = ∂µψ∂µψ
† − iα∂µψ∂µψ + iα∂µψ∂µψ

† +O(α2) ≈ ∂µψ∂µψ† (3.31)

so the total derivative from symmetry variation is Kµ = 0, and the Noether current is determined
fully by the on-shell variation:

jµ = i(ψ∂µψ† − ψ†∂µψ) (3.32)
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It is simple to check the current satisfies continuity equation by using the eoms:

∂µj
µ = i(ψ†∂2ψ − ψ2ψ†) = i(−ψ†m2ψ + ψm2ψ†) = 0 (3.33)

and the conserved charge is written as

Q =

∫
d3x j0 = i

∫
d3x (ψψ̇† − ψ†ψ̇) (3.34)
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4 Appendix

4.1 Infinitesimal rotation

Consider a infinitesimally small rotation R = I +A, the orthogonality demands

RTR = (I +AT )(I +A) ≈ I +AT +A = I

This requires
AT = −A

namely, that A must be antisymmetric. In 2D, there is only one class of antisymmetric rotation
matrix:

A = ε

(
0 1
−1 0

)
≡ εJ

where ε is a small real number and J is termed the generator of SU(2). Hence for a small angle,
rotation matrix can be written as

R = I + εJ =

(
1 ε
−ε 1

)
+O(ε2)

Under such rotation we have (
x′

y′

)
≈
(
x
y

)
+

(
εy
−εx

)
This immediately gives another useful form of infinitesimal rotation:

r′ = r + ε× r

where ε points into the ẑ direction.
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