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1 Introduction

The essence of Markov Chain Monte Carlo (MCMC) method is to solve a problem by mapping it onto an iterative
sampling problem of statistics, whereby the sampling procedure is governed by an engineered kernel so that the iteration
converges to the result of the original problem. This is particularly useful when dealing with problems which have
exponentially large searching space which makes them hard to solve by enumeration, or where there is a computational
wall that is hard to penetrate by existing algorithms, like exactly diagonalizing a huge Hamiltonian.

Although MCMC is widely used to simulate statistical ensembles (e.g. thermal average), the target of the original
problem need not have statistical essence (e.g. Finding the ground state wavefunction of a Hamiltonian). In the latter
case, iterations in MCMC serves as a statistical detour around the computational wall that stands between the destination
and the starting point, and may be perceived as a useful intermediary redundancy which is ultimately to be removed by
convergence at the fixed point.

Feng: add more examples in physics

What does a physicist mean by sampling?

Statisticians and physicists use the word sampling not in exactly the same convention. In the view of a physicist (dummy
physicist like Shi), sampling simply means imposing an observable operator (a Hermitian matrix) Ô on a system’s
Hilbert space for multiple times, which involves an average over either quantum or thermal ensemble, or both. In
other words, given an observable Ô, some information is inevitably coarse-grained by the sampling thus not detectable
even though the statistical mechanics of the underlying microscopics are well-modeled. This perception is a top-down
picture, whereby details of the system cannot be thoroughly pinned down as we stand at the top side, and the sampled
data are perceived as shadows of true physical laws distorted and coarse-grained by probes. Such deficiency of physical
sampling will always be with us, and every physicist has to learn to live with it. Nonetheless, as statisticians will tell us
in MCMC, we sometimes can utilize this fact as our strengths to give predictions of physical properties with decent
accuracy.

What does a statistician mean by sampling?

A statistician will argue, as the resolution of our probe will never be enough to pin down every detail of the underlying
mechanics, why not just coarse-grain the theory at the first place, thus calculations can be rendered easier. Hence, in
statistics, sampling means the selection of a subset of all theoretical elements, or rather, distributions, to resemble the
essence of the theory such that we can give a good enough prediction with lower cost. The simplest example will be the
uniform random sampling.

Suppose we want to evaluate the integral:

J =

∫
f(x)p(x)dx (1.1)
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where p(x) is a probability density distribution, f(x) is some physical property that is dependent on microscopic states
x. Naively all we need to do is evaluate the integral by brute force and get the number output. But instead of doing such
a verbose calculation, a simpler way is to obtain independent and evenly distributed samples {x1, x2, . . . , xN} from
p(x), and calculate

J =

N∑
i

f(xi)p(xi)/N (1.2)

But the problem with this method is that the sampling resolution has to be extremely sharp when the density of states is
huge somewhere. Hence if the theoretical distribution p(x) is spiky at a few x, we have to make significantly more
sample points in order to tackle those peaks, even though the rest of p(x) are flat that doesn’t cost much. There is
another preferred way that addresses this problem, whereby samples are picked up in such a way that they resembles
the key information of the continuous distribution p(x), thus J can be evaluated by

J =

N∑
i

f(xi)/N (1.3)

which should give a decent approximation of the original theory. In case of the canonical ensemble with Boltzmann
distribution, the probability density p(x) ∝ exp{−βE} has most of its weight close to E = 0, and a thin, long tail
at higher E. Hence to do the aforesaid sampling, the subset of points that we need to pick up from p(x) need to
concentrate more at low energy and become sparse at high energy, so the essential information is captured. In MCMC,
it is equivalent to

J =

N∑
t=0

f(xt)/N (1.4)

where each xt is a configuration sampled at time t generated by some MCMC kernel, and it is expected to converge to
the true J when N is large enough. This is exactly what the pioneers of MCMC in physics community did in [?] where
authors used such nonuniform sampling to calculate thermal averages in canonical ensembles.

2 Markov Chain Basics

In this section we introduce the generic routine of MCMC, that is, to find a iteration kernel K that leads to the
convergence to desired result, in which the final fixed point must satisfy the detailed balance condition (thus a global
balance).

The current state in a Markov chain only depends on the most recent previous states, i.e,

P (Xt|Xt−1.Xt−2, . . . , X0) = P (Xt|Xt−1)

Definition 2.1 (Markov Chain). MC = (Ω, v̂0, K̂), where Ω is the state space, v̂0 : Ω→ R is the initial probability
distribution function over the states, K̂ : Ω×Ω→ R is the transition probability function. Where the hats on K̂ and v̂0

are used to emphasize they are essentially maps instead of numbers.

Remark: In many places the Markov Chain are defined without hats as MC = (Ω, v0,K). This may lead to the
confusion in expression like v0K as it is usually written. Because maps do not multiply, but only interact via composition
i.e. v0 ◦K. Yet most of times v0K are used to describe the probability distribution, which is a tuple of real numbers
instead of a composite map. Therefore we use the hats to distinguish probability distribution from probability distribution
function. In the forthcoming texts, we will denote the evaluated probability function by lower case letters. For example

v0 = v̂0 · Ω, K = K̂ · (Ω× Ω)

where v0 and K can be perceived as real-valued vector and matrix. Elements in vector v0 are real-valued probability of
all configurations ωi ∈ Ω, and elements in matrix K are conditional probabilities that connect pairs of configurations.

Example 1 In the simplest Ising model on an a× b = N sites with Si = ±1, the state space Ω is the collection of all
configurations i.e. Ω =

⊗N Z2, with the total number of states #Ω = 2N . Each element ω ∈ Ω is a N dimensional
tuple whose elements have value±1. The initial probability distribution is denoted by the evaluated probability function
v0, a real-valued tuple, where the subscript 0 says that the probability distribution is at zeroth iteration. Of course
the initial probability distribution v0 is arbitrary thus not the desired distribution which we are trying to sample. Our
goal is then to find a way to evolve v0 to v1, . . . , vn, hoping such a series would ultimately converge to the true
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probability distribution, e.g. the Boltzmann weights e−βEω for the Ising model in a canonical ensemble. This evolution
of probability distribution is described by the aforementioned K.

At time n, the Markov Chain state will follow a probability for finite states, and the state converge to an invariant
probability,

vn = v0K
n and lim

n→∞
v0K

n = π

Our objective is to design a Markov chain kernel K, such that π is the unique, invariant probability of K (a fixed
point). Suppose we are given Ω and a target probability π = (π1, · · · , πN )(1×N), our goal is to design v0 and K so
that πK = π, which is a necessary condition.

Here we check the conditions for topology of transition matrix:

• stochastic matrix:
∑N
j=1Kij = 1,∀i ∈ Ω,Kij ≥ 0 or K1N×1 = 1

• global balance: π1×NK = π,
∑N
i=1 πiKij = πj ,∀j ∈ Ω

• detailed balance(reversible): πiKij = πjKji,∀i, j ∈ Ω

We should know that the detailed balance is a sufficient but not necessary condition for global balance and we
should know detailed balance indicates stationarity and in particular global balance,

πK =

n∑
i=1

πi[Ki1, · · · ,KiN ] =

n∑
i=1

[π1K1i, · · · , πNKNi] = π

N∑
i=1

πiKij = πj

N∑
i=1

Kji = πj

• irreducibility: A Markov Chain is irreducible if its transition matrix K has only one communication class.
i→ j, denotes a state j is accessible from i, if there exists a finite step M , such that

KM
ij =

∑
i1,i2,··· ,iM−1

Kii1Ki1i2 · · ·KiM−2iM−1
KiM−1j > 0

i ↔ j generates a partition of the state space into disjoint equivalence(communication) classes given by
Ω = ∪Ci=1Ωi and one communication class means all the states are accessible from each other

• Aperiodicity: to define this, we need to define a periodic MC first. An irreducible MC with transition matrix
K has period d if there is a unique patition of graph G into cyclic classes:

C1, C2 · · · , Cd,
∑
j∈Ck

Kij = 1,∀i ∈ Ck−1

In an periodic Markov Chain there is no connection between states within each individual cyclic class, and an
irreducible Markov chain with transition matrix K is aperiodic if it’s largest period is d = 1.

• stationarity distribution: A Markov chain with transition kernel K has stationary distribution π if

πK = π

There may be many stationary distributions w.r.t K. Even if there is a stationary distribution, a Markov chain
may not always converge to it.

Theorem 2.1 (Perron-Frobenius*). For any primitive (irreducible and aperiodic) N ×N stochastic matrix K, with
eigenvalues

λ1 > |λ2| > · · · > |λr|
and multiplicities as m1,m2, · · · ,mr, with u1 = π,v1 = 1 has the biggest eigenvalue λ = 1 with m1 = 1.

Proofs can be found here in both numerical(tr(K) =
∑n
i=1Kii =

∑r
i=1miλi) and geometric perspective(by defining

sphere x2
1 + x2

1 + · · ·+ x2
n = 1). More detailed one can be found here.

For a square matrix, we have eigen decomposition as K = QΛQ−1 and as n→∞,

Kn = QΛQ−1 = QΛnQ−1 → λ1v1u1 = 1π
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2.1 A worked example of balance equations

The global balance equations are a set of equations that characterize the (dynamical) equilibrium distribution (or any
stationary distribution, for example, a composite chemical system in a dynamical equilibrium).

Suppose at time t we have some initial pdf configuration π(0) = (p1, p2) which may be perceived as a discrete pdf of
two distinct chemical compounds, and the transition matrix K is defined:

K =

(
k11 k12

k21 k22

)
.

that is, at time t+ 1 the new distribution π′ is:

π(1) = π(0)K = (p1 p2)

(
k11 k12

k21 k22

)
= (p1k11 + p2k21, p1k12 + p2k22) (2.1)

with the row-major index notation we can write:

π
(1)
i =

∑
j

π
(0)
j kji, with i, j ∈ {1, 2} (2.2)

If the system reaches an equilibrium state at time T , then the state at next moment T + 1 should remain the same (to be
precise, they are element-wise the same), that is:

π
(T+1)
i =

∑
j

π
(T )
j kjk = π

(T )
i (2.3)

For short, we say at equilibrium we have a fixed point characterized by

πi =
∑
j

πjkji (2.4)

In the context of probability theory, let Ω be the total state space, and let a,b ∈ Ω be two different states. Suppose at
time t the probability for the system to stay in state a is p(a), and the probability of state a to transit into state b at
next moment t+ 1 is p(at → bt+1). Therefore, the probability for the system to stay in state b at t+ 1 and in a at the
previous moment is:

p(bt+1,at) = p(at)p(at → bt+1) (2.5)
note that we have implicitly used that p(a→ b) is essentially a conditional distribution i.e. pt(a→ b) ≡ pt(bt+1|at).
Now note that not only can a transit to b, but there can be many other states which have non-zero probability to transit
into b in the next moment. Therefore, the probability of the system to stay in state b is

p(bt+1) =
∑
n

p(bt+1,nt) =
∑
n

p(nt)p(nt → bt+1) (2.6)

Now we can identify p(bt+1) as v(t+1)
b : the probability that the system be at b−th state at the t+ 1, and p(at → bt+1)

as kab: the probability that the system transits from a-th state at t to b-th state at t+ 1:

p(bt+1) ⇐⇒ v
(t+1)
b

p(at → bt+1) ⇐⇒ kab
Therefore the global interation can be written as:

v
(t+1)
b =

∑
j

v(t)
a kab (2.7)

or in the matrix form:
v(t+1) = v(t)K (2.8)

if the a fixed poin is reached at T then:
v(T ) = v(T+1) = v(T )K (2.9)

3 Statistical Error Analysis and Binning

Note: MCMC samples are correlated. Discuss the independent case, then discuss the correlated case. Error bar can be
crucial in Baysian mothods. Call central limit theorem.
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Algorithm 1 The Metropolis-Hastings Algorithm

Input: Target probability distribution π(x), current state x(t) ∈ Ω, and the proposal probability distribution Q(x, y).
Output: New state x(t+1) ∈ Ω.
1. Propose a new state y by sampling from Q(x(t), y).
2. Compute the acceptance probability:

α(x, y) = min

(
1,
Q(y, x)

Q(x, y)
· π(y)

π(x)

)
3. With the probability α(x, y), we have x(t+1) = y, otherwise x(t+1) = x(t)

4 The Metropolis-Hastings Algorithm

As the above notations, for x, y ∈ Ω, we have

K(x, y) =

Q(x, y)α(x, y) = Q(x, y) min

(
1, Q(y,x)

Q(x,y) ·
π(y)
π(x)

)
if y 6= x

1−
∑
y 6=xQ(x, y)α(x, y) if y = x

Next we want to prove this definition of transition matrix K satisfies the detailed balance.

π(x)K(x, y) = π(x)Q(x, y) min

(
1,
Q(y, x)

Q(x, y)
· π(y)

π(x)

)
= min

(
π(x)Q(x, y), π(y)Q(y, x)

)

π(y)K(y, x) = π(y)Q(y, x) min

(
1,
Q(x, y)

Q(y, x)
· π(x)

π(y)

)
= min

(
π(y)Q(y, x), π(x)Q(x, y)

)
In many cases, the target distribution is written as a Gibbs distribution or Boltzmann distribution,

π(x) =
1

Z
e−E(x), or π(x) =

1

Z
e−E(x)/T

For simplicity let us used Gibbs for an example. While the normalizing constant is hard to compute, suppose the
proposal probability is symmetric, i.e. Q(x, y) = Q(y, x), then the acceptance probability becomes

α(x, y) = min(1,
π(x)

π(y)
) = min(1, e−(E(x)−E(y))) = min(1, e−4E)

In this way, if 4E < 0, i.e. state y has lower energy, α(x, y) = 1, and x(t+1) = y; if 4E > 0, i.e. state x has
lower energy, α(x, y) = e−4E . Note that4E is often computed locally as the two states x and y share most of their
elements.

There exist other designs for the acceptance rate that guarantee the detailed balance equation, such as

α(x, y) =
π(y)Q(y, x)

π(x)Q(x, y) + π(y)Q(y, x)

Or more generally,

α(x, y) =
s(x, y)

π(x)Q(x, y)

where s(x, y) is a symmetric function.

With this method, we can maximize a function for optimization by slowly changing the stationary distribution π(x)
with additional temperature T . The temperature starts from a high T0 and decreased to 0 as n→∞.

π(x, Tn) =
1

Z(Tn)
e−E(x)/Tn

which is known as simulated annealing method.
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4.1 Application of M-H method in Ising model

The first implementation of M-H algorithm is carried out in

[?], whose underlying theory was given much later in [?].

See example C++ code in https://github.com/fengshi96/MCMC.

5 Gibbs Sampler

Gibbs sampler was created for obtaining samples from distributions that are difficult to sample. Here we use the vector
form, and E(x) denotes the energy function,

π(x) =
1

Z
e−E(x),x = (x1, x2, · · · , xd) ∈ Ω

The Gibbs sampler was introduced as a stochastic version of the relaxation algorithm. In this way, we first introduce the
relaxation algorithm, which has no no guarantees for finding the global optimum and in fact, it often gets stuck in local
optima.

Algorithm 2 Relaxation Algorithm

Input:Energy function E[x], current state x(t) = {x1, x2, · · · , xd} ∈ Ω and each xi can have L possible values as
{y1, y2, · · · , yL}.
Output: New state x(t+1) ∈ Ω.
1. Select an index variable i ∈ {1, 2, · · · , d} at random.
2. Compute

u = arg min
yl

(
E(xi = yl|x−i)

)
for l = 1, 2, · · · , L

3. Let
x

(t+1)
−i = x

(t)
−i and x(t+1)

i = u

In formal, the goal of Gibbs sampler is to sample a joint probability,

x = (x1, x2, · · · , xd) ∼ π(x1, x2, · · · , xd)

by sampling in each dimension according to the conditional probability,

xi ∼ π(xi|x−i) =
1

Z
exp(−E(xi|x−i))

Algorithm 3 Gibbs Sampler

Input:Target Probability function π[x], current state x(t) = {x1, x2, · · · , xd} ∈ Ω and each xi can have L possible
values as {y1, y2, · · · , yL}.
Output: New state x(t+1) ∈ Ω.
1. Select an index variable i ∈ {1, 2, · · · , d} at random.
2. Compute conditional probability vector u = (u1, u2, · · · , uL)with

ul = π(xi = yl|x−i)

3. Sample j ∼ u and set x(t+1)
−i = x

(t)
−i and x(t+1)

i = yj .

Here I want to point out the difference explicitly. When updating one element of the current sample, relaxation algorithm
finds the current local minimum and Gibbs sampler samples from its distribution. We should know that only find the
local minimum will limit the stochasticity.

A sweep of the Gibbs sampler is a sequential visit to all of the sites (variables) once. Although the transition matrix
Kii for one Gibbs step may not be irreducible and aperiodic, it is easy to show that the total transition matrix
K = K1K2 · · ·Kd does have these features after one sweep.
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If we have x(t) ∼ π(x), by above procedure,

x(t) = (x1, · · · , xi, xi+1, · · · , xd) ∼ π(x)

x(t+1) ∼ π(yj |x−i)π(x−i)

∼ π(yj |x1, · · · , xi−1, xi+1, · · · , xd)π(x1, · · · , xi−1, xi+1, · · · , xd)
x(t+1) = π(x1, · · · , xi−1, yj , xi+1, · · · , xd) ∼ π(x)

6 Cluster Sampling

Let G = (V, E) be an adjacency graph. Each vertex vi ∈ V has a state variable xi with a finite number of labels, i.e.
xi ∈ {1, 2, · · · , L}. If X = (x1, x2, · · · , x|V|) denotes the labeling of the graph, the Ising (L = 2) or Potts (L ≥ 3)
model is a Markov Random Field,

π(x) =
1

Z
exp

(
−
∑
〈s,t〉∈E

βst1[xs 6= xt]

)

The Swendsen-Wang (SW) algorithm introduces a set of random variables on the edges indicating if they are connected
or not,

U =

{
µe : µe ∈ {0, 1},∀e ∈ E

}
The edge is connected is µe = 1. The binary variable µe follows a Bernoulli distribution conditional on the labels of
the vertices e connects, xs , xt,

µe|(xs, xt) ∼ Bernoulli

(
(1− e−βst)1[xs = xt]

)
,∀e ∈ E

µe = 1 with probability 1− e−βst if xs = xt and µe = 0 with probability 1 if xs 6= xt.

The SW algorithm iterates the clustering and flipping step. In clustering step, given the current labeling, we calculate
the adjacency of the graph and form a set of connected components with the same label. In flipping step, we randomly
select a connected component and assign an arbitrary color to all the lattice inside the connected component. In this step,
one may choose to perform the random color flipping for some or all of the connected components in CP independently,
as they are decoupled. By doing so, all possible labelings of the graph are connected in one step, just like one sweep of
the Gibbs sampler.

Algorithm 4 Swendsen-Wang Algorithm
Initialize: The adjacency graph G = (V, E), a set of random variables for each edge as U = {µe : µe ∈ {0, 1},∀e ∈ E}
denoting their connectivity and a set of random variables denoting the label of the lattice as X = {xi : xi ∈
{1, 2, · · · , L},∀i ∈ V}.
Input: Current connectivity of edges U(t) and labeling of lattice X(t) at time t
Output: The connectivity of edges U(t+1) and labeling of lattice X(t+1) at time t+ 1
1. the clustering step: sample the edges according to

µ(t+1)
e |(x(t)

s , x
(t)
t ) ∼ Bernoulli((1− e−βst)1[x(t)

s = x
(t)
t ]),∀e ∈ E

In practice, we first let µ(t+1)
e = 0 if x(t)

s 6= x
(t)
t for each e = 〈s, t〉 and then the remaining µ

(t+1)
e = 0

with the probability e−βst . Hence, the left edges form K connected components as CP(U,X) = {cpi : i =
1, 2, · · · ,K,with ∪Ki=1 cpi = V}. Each connected component is a set of lattice with the same label.
2. the flipping step: randomly assign each connected component with a new label.
Select one connected component Vo ∈ CP at random and assign a common label l to all lattice in Vo. The new label l
follows a discrete uniform distribution,

x(t+1)
s = l,∀s ∈ Vo, l ∼ Uniform{1, 2, · · · , L}

Next, we want to show that the SW algorithm can be interpreted as a Metroplis-Hastings step with acceptance rate 1.
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Figure 1: At each step, the SW algorithm flips a patch of vertices.

As shown in Figure ??, suppose the current state is A where V0 is connected to V1. The edges between V0 and V1

are turned off in the clustering step with the probability e−β , from which we form a cut C01 between V0 and V1 as
C01 = {e = 〈s, t〉, s ∈ V0, t ∈ V1}(as crosses in figure). Similarly, if the Markov chain is currently at state B, in order
to achieve A, we also form a cut C02 = {e = 〈s, t〉, s ∈ V0, t ∈ V2}. From the setting of Metroplis-Hastings, we need
to compute the proposal probability Q(A→ B) and Q(B → A), which is difficult but their ratio can be shown as

Q(A→ B)

Q(B → A)
=
e−β|C01|

e−β|C02|
= e−β(|C01|−|C02|) (6.1)

where | · | denotes the cardinality of a set. Remarkably, the ratio of the probability distribution is also decided by the
size of the cuts because the probability distribution counts the number of connected edges.

π(A)

π(B)
=
e−β|C01|

e−β|C02|
= e−β(|C01|−|C02|) (6.2)

Hence, the acceptance rate is given by

α(A→ B) = min(1,
Q(A→ B)π(B)

Q(B → A)π(A)
) = 1 (6.3)

At low temperature, β ∝ 1/T and thus the SW flips large patches with acceptance rate 1. Therefore, it can mix quickly
even at critical temperatures.

Proof. (of Equation ??) Let UA|(X = A) and UB |(X = B) be realizations of U at state A and state B. In the
clustering step, we form two sets of connected components as CP(UA|X = A) and CP(UB |X = B).

For UA|(X = A), following the Bernoulli probabilities, we divide the UA into on and off edges as UA = UA,on ∪
UA,off, where UA,on = {µe ∈ UA : µe = 1} and UA,off = {µe ∈ UA : µe = 0}.
However, we are only interested in those UA which are able to yield V0. We collect all such UA including V0 given
A is a set, Ω(V0|A) = {UA : V0 ∈ CP(UA|X = A)}. To be concrete, in order to get V0, all edges between V0 and
V1 must be cut off. We denote the remaining off edges as −UA,off in a sense that −UA,off ∪ C01 = UA,off for all
UA ∈ Ω(V0|A).

Similarly, we have −UB,off as −UB,off ∪ C02 = UB,off for all UA ∈ Ω(V0|B).

A key observation in this formulation is that there is a one-to-one mapping between Ω(V0|A) and Ω(V0|B) because we
have a one-to-one mapping between UA and UB by setting UB,on = UA,on and UB,off =− UA,off ∪ C0,2.

That is, UA and UB only differ in the cuts and all these random variables inside the cuts are set as off. In other words,
their connected components are the same CP(UA|X = A) = CP(UB |X = B). Similarly, any UB ∈ Ω(V0|B) has
a one-to-one mapping to UA ∈ Ω(V0|A).

Now suppose we choose V0 ∈ CP(UA|X = A) randomly, its probability is

P(V0|A) =
∑

UA∈Ω(V0|A)

1

|CP(UA|X = A)|
∏

e∈UA,on

(1− e−βe)
∏

e∈−UA,off

e−βe

∏
e∈C01

e−βe
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Similarly, the probability of choose V0 in state B is

P(V0|B) =
∑

UB∈Ω(V0|B)

1

|CP(UB |X = B)|
∏

e∈UB,on

(1− e−βe)
∏

e∈−UB,off

e−βe

∏
e∈C02

e−βe

In this way, we have
Q(A→ B)

Q(B → A)
=

P(V0|A)

P(V0|B)
=
e−β|C01|

e−β|C02|
= e−β(|C01|−|C02|)

7 Hamilton Monte Carlo

Kong: Just copy the original book for further understanding.

7.1 Hamilton Mechanics

Hamiltonian Monte Carlo (HMC) is a powerful framework for sampling from high-dimensional continuous distributions.
Langevin Monte Carlo (LMC) is a special case of HMC that is widely used in Deep Learning applications. Given an
n-dimensional continuous density P (X), the only requirement for implementing HMC is the differentiability of the
energy U(X) = − logP (X). Like other MCMC methods (e.g. slice sampling, Swendsen-Wang cuts), HMC introduces
auxiliary variables to facilitate movement in the original space. In HMC, the original variables represent position, and
the auxiliary variables represent momentum. Each position dimension has a single corresponding momentum variable,
so the joint space of the original and auxiliary variables has dimension 2n, twice the size of the original space. Once the
momentum variables are introduced, Hamilton’s Equations are used to simulate the time evolution of a physical system
with potential energy U . The properties of Hamilton’s Equations ensure that movement in the joint space preserves the
distribution of P in the original space.

Hamiltonian Mechanics was originally developed as an alternative but equivalent formulation of Lagrangian Mechanics,
and both are equivalent to Newtonian Mechanics. In Hamiltonian Mechanics, the states of a physical system are
represented by a pair of n- dimensional variables q and p. The variable q represents position in the system, and p
represents momentum. A joint state (q, p) provides a complete description of the physical system at a single instant in
time.

The evolution of a state (q, p) over time is governed by a scalar-valued function H(q, p) representing the energy of the
system, and a pair of partial differential equations known as Hamilton’s Equations:

dq

dt
=
∂H

∂p

dp

dt
= −∂H

∂q

H(q, p) is often referred to as the Hamiltonian of the system, and it remains constant as (q, p) evolves over time.
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Supplemental

Formal Definition

More details about this section can be found in [?].

The basic building blocks of a probability theory can be formalized in the following:

1. An abstract set Ω, termed probability space or sample space, whose elements ω are called the elementary
event or sample point.

2. A Borel field F of subsets of Ω, termed measurable sets or events, in which Ω is also a member.
3. An additive probability measure P defined on F

These together make the probability triple (Ω,F, P ) TODO: what’s its physics analogy.

Why Borel field?

Microcanonical ensembles

MCE focus on systems that are mechanically and adiabatically isolated from its environment (∆E = W = Q = 0).
The general coordinates ~x is fixed, so that there is no work done i.e. W = 0; Internal energy E is also fixed since
Q = 0 ⇒ ∆E = Q+W = 0. This is the macrostate given E, ~x, denoted by M ≡ (E, ~x). The corresponding set of
mixed microstates form the microcanonical ensemble.

A microstate in the phase space is labeled by µ i.e. phase space coordinate µ ≡ (x1, p1, . . . , xN , pN ), whose time
evolution is governed by H(µ). In MCE, the Hamiltonian conserves the total energy of a given system, so all valid
microstates are confined to the surface H(µ) = E. The central postulate of Statmech states that the equilibrium
probability distribution is given by:

P(E,~x) =
1

Ω(E, ~x)
·
{

1, forH(µ) = E

0, otherwise
(S1)

The zeroth law

Consider two microcanonical systems (each with a large dof), their state in phase space are µ1 and µ2 respectively.
We allow them to exchange energy but not work. Remember these are systems modeled by MCE, so their state µi is
determined by internal energy Ei and ~x only.

The combined system has energy:
E = E1 + E2.

For this big system, (at any moment), its position in phase space is spanned by µ = µ1⊗µ2. Therefore the Hamiltonian
is described by:

H(µ1 ⊗ µ2) = H1(µ1) +H2(µ2) (S2)
and

PE(µ1 ⊗ µ2) =
1

Ω(E)
·
{

1 for H1(µ1) +H2(µ2) = E

0 otherwise
(S3)

Note: Here the Big system itself is viewed as a MCE! Now we count how many states µ = µ1 ⊗ µ2 are possible.
For each pair of {E1 ± dE1/2, E2 ± dE2/2}, there are Ω1(E1)×Ω2(E2) states. Therefore the total allowed states for
the Big system is:

Ω(E) =

∫
dE1Ω1(E1)Ω2(E − E1) (S4)

we can write Ω as Ω = exp{log(Ω)} = exp{S/kB}, so:

Ω(E) =

∫
dE1 exp

{
S1(E1) + S2(E − E1)

kB

}
(S5)

According to (3), all states are equal weighted, therefore the energy that produces largest Ω(E) is the equilibrium
energy we are looking for. Since the integrand is exponentially large, we expect the mean contribution is from the peak
defined at E∗1 , so that S1 + S2 is maximized, thus the total entropy is maximized:

S(E) = kB log Ω(E) ' S1(E∗1 ) + S2(E∗2 ) is maximized (S6)
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Now we find E1 that maximize S1 + S2:

∂

∂E1

(
S1(E1) + S2(E − E1)

)
=
∂S1

∂E1
+
∂S2(E − E1)

∂E1

=
∂S1

∂E1
− ∂S2

∂E2
= 0

(S7)

therefore:
∂S1

∂E1
=
∂S2

∂E2
(S8)

which must be satisfied when the joint system reach the equilibrium! It is consistent with zeroth law, that systems in
equilibrium has equal temperautre:

∂S

∂E

∣∣∣
x

=
1

T
(S9)

note they are evaluated at their own fixed x.

Canonical ensembles
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The story of sampling
This part, I will recap the history of sampling from the posterior distribution, which is a unique chance to grasp the
main idea of sampling in statistics. Thanks S. Feng.

In history, with the power of Central Limit Theorem, we can use a single point estimate for a parameter and its standard
error. (Kong: CLT talks about asymptotic normality of a distribution, but why we call it a single point estimation and
does it has anything to do with estimate of sample mean?) However, in the view of Bayesian analysis, we seek to
summarize the entire posterior distribution. The key difference lies in that here Bayesian tends to use entire posterior
distribution rather than the mode of likelihood function and standard errors. In the same way, if we are able to summarize
the entire posterior distribution for a parameter, there is no need to rely on asymptotic arguments about the normality of
the distribution: It can be directly assessed.
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