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Exact Solution of Kitaev’s Honeycomb Model

Shi Feng

1 Kitaev’s spin lattice Hamiltonian

The honeycomb lattice with anisotropic nearest neighbor coupling was first pro-
posed by Dr. A. Kitaev in 2006 [1]. It is a paradigmatic example of a quantum
spin liquid ground state emerging from a highly frustrated Hamitonian that can
be solved exactly. In Kitaev’s honeycomb lattice model, the degrees of freedom

Figure 1: Kitaev’s honeycomb lattice. The solid and hollow dots indicate sub-
lattice A and B, with anisotropic coupling in x, y, z directions. A plaquette is
labeled p by convention.[2]

live on vertices of honeycomn lattice with nearest neighbor interactions. The in-
teractions between spin degrees of freedoms are made anisotropy by directional
coupling constants {Kx,Ky,Kz}. The Hamiltonian reads:

H = −Kx

∑
〈ij〉x

σxj σ
x
k −Ky

∑
〈ij〉y

σyj σ
y
k −Kz

∑
〈ij〉z

σzjσ
z
k (1)

The schemetic model is as shown in Fig.1
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2 Majorana fermionisation

We start by mapping one spin-1/2 particle on site i onto two fermionic modes
f1,i and f2,i, in analogy with two spins.

f†1,i |0〉1 = |1〉1 , f†2,i |0〉2 = |1〉2 .

The composite modes made by these two modes are:

|00〉 , |01〉 , |10〉 , |11〉

To make the mapping consistent with spin-1/2 particles we need to project
out |01〉 and |10〉 states and keep only |00〉 and |11〉 states that are to be mapped
to spin down and spin up:

|↑〉 ≡ |00〉 and |↓〉 ≡ |11〉 (2)

with f1,i |00〉 = f2,i |00〉 = 0 and f†1,if
†
2,i |00〉 = |11〉. Therefore, to make the map

a valid representation we need to restrict the Hilbert space into its subspace L,
whose states satisty

Di |ψ〉 = |ψ〉 (3)

where Di can be viewed as a gauge operator:

Di = (1− 2f†1,if1,i)(1− 2f†2,if2,i) (4)

It is readily to see that this definition of Di, when acting on |11〉 and |00〉, leaves
these states unchanged:

Di |00〉 = |00〉 , Di |11〉 = |11〉

Di |10〉 = − |10〉 , Di |01〉 = − |01〉

Now, we would like to represent the spin operators in terms of Majorana fermions,
i.e. split each of the fermionic modes into 2 Majorana modes. Consider a collec-
tion of four Majorana operators c, bx, by, bz, that act on the 4-dimensional Fock
space:

ci = f1,i + f†1,i

bxi = i(f†1,i − f1,i)

byi = f2,i + f†2,i

bzi = i(f†2,i − f2,i)

(5)

In this Majorana representation we can re-write Di as:

Di = (1− 2f†1,if1,i)(1− 2f†2,if2,i) = cib
x
i b
y
i b
z
i (6)
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Figure 2: (a) 2 spins on vertices are represented by (b) 4 majoranas c, bx, by, bz.
Since ûjk commute with Hamitonian which has eigenvalue ± 1, we can further
simplity the representation to (c) [2]

Then we re-write the spin operators in terms of the same Majorana modes:

σ̃x = ibxc

σ̃y = ibyc

σ̃z = ibzc

(7)

Each majorana operator is
√

2-dimensional. Hence, the mapped Hilbert space

L̃ is (
√

2
4
)N = 4N , in contrast with the original physical Hilbert space L, that

is 2N dimensional. Then, each spin operator σi is expressed in terms of four

majarana operator. One can check that the newly defined Majarana operators
obey pauli algebra. (A Mapped version of spin). In this way, the Hamiltonian
is mapped to:

H̃ = −
∑
〈jk〉α

Kασ̃
α
j σ̃

α
k = −

∑
〈jk〉α

Kαb
α
j b
α
k cjck = i

∑
〈jk〉α

(
Kα(ibαj b

α
k )
)
cjck (8)

Define the following two new operators:

ûjk ≡ ibαj bαk
Âjk ≡ Kαûjk

(9)

Thus the Hamiltonian can be written compactly as:

H̃ = i
∑
〈jk〉α

Âjkcjck (10)

The convenience of this representation comes from several nice properties of link
operator ûjk:

(i) ûjk, thus Âjk, is anti-symmetric under index exchange.
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ûjk = −ûkj , Âjk = −Âkj .

This property follows directly from the anti-commutation relation of Majorana
fermions.

(ii) ûjk is Hermitian:

û†jk = ûjk.

This property follows directly from the anti-commutation relation of Majorana
fermions, and that Majoranas are their own anti-particles.

(iii) The eigenvalue of ûjk is ±1
It is obvious since bα is defined to be a Majorana operator which satisfies anti-
commutation {bαj , bαk} = 2δjk, hence:

û2jk = −bαj bαk bαj bαk = bαk b
α
j b
α
j b
α
k = 1.

Therefore ûjk must have eigenvalues ±1.

(iv) operators defined on different links commute, i.e. [ûjk, ûlm] = 0.
If links do not share a common site:

[ûjk, ûlm] = ûjkûlm − ûlmûjk = −bαj bαk b
β
l b
β
m + bβl b

β
mb

α
j b
α
k

= −bαj bαk b
β
l b
β
m + bαj b

α
k b
β
l b
β
m = 0

where we have applied the anti-commutation relation 4 times on bβl b
β
mb

α
j b
α
k to

re-arange them into the same index order as the other term. It’s similar to show
that the answer is the same even if they share a same site, for the upper index
α and β must be different in that case.

(v) ûjk is a constant of motion, i.e. [ûjk, H] = 0.
Follows (iv) and the Majorana representation of Hamiltonian

As is shown in (v) that ûjk commutes with Hamiltonian, defining its eigenvalues
good quantum numbers. Also, due to (ii), (iii) and (iv), we can specify the
eigenvalues, ujk = ±1, of all link operators ûjk simultaneously. We therefore

are tempted to decompose the system’s extended Hilbert space L̃ into sectors
L̃{ujk} that are defined by the configurations of ujk on all links:

L̃ =
⊕
{ujk}

L̃{ujk} (11)

If we choose to work in the subspaces of L̃{ujk}, i.e. represent the extended

Hamiltonian H̃ under the basis defined by these link operators, we can shake
off the hat on {ûjk} and represent the Hamiltonian by their eigenvalues {ujk}:

H̃ = i
∑
〈jk〉α

Ajkcjck (12)
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Note here in this representation Ajk = Kαujk are just numbers indexed by links
- a simple anti-symmetric matrix.

3 The exact solution

It seems we are done by Eq.(12). Since ujk are good quantum numbers, we are

tempted to label states by {ujk}. Just apply Fourier transformation on H̃ =
i
∑
〈jk〉α

Ajkcjck, then it can be represented in non-interacting Majoranas in k

space, thus can be diagonalized directly, in the same way we did for graphene.
However, we have not apply the gauge operator! That means there will be
unphysical states in the solution which have to be gauged out.

We have simplified the Hamiltonian in the last section by working under the
subspace L̃{ujk}. Yet along with this extended representation we also introduced
redundencies that contains unphysical states. In fact what we now have is a
emergent lattice gauge theory with the gauge operator Di defined in section
2. It is crucial to keep in mind that up till now we have been working in the
extended Hilbert space L̃ that contains unphysical states (We have not fixed the
gauge!). To eliminate the unphysical states we must enforce the gauge operator
Di = 1 in order to maintain in the subspace L, that is:

Di = cib
x
i b
y
i b
z
i ≡ 1 (13)

In other words, the states that satisfy Di |ψp〉 = |ψp〉 for all i are the physical
states of the system (|ψp〉 is abbrev. of |ψphysical〉), whereas those which satisfy
Di |ψu〉 = − |ψu〉 for any i in the lattice are redundent unphysical states.(|ψu〉
is abbrev. of |ψunphysical〉). One can check under this restriction we retain the
pauli algebra.

Another way to put condition (13) upon the extended Hilbert space is to define
a projection operator. We need to do is to define a projection operator to
project out the unphysical states, i.e. find an operator PL̃→L that satisfies
PL̃→L |ψp〉 = |ψp〉 and PL̃→L |ψu〉 = 0. It is readily to see such an projection
operator can be simply defined as follows:

PL̃→L =
∏
i

(1 +Di

2

)
(14)

Constraints defined by Eq.(13) and Eq.(14) are equivalent. The question is how
do we implement the constraint to the extended Hilbert space. Dr. A. Kitaev
came up with a solution by construction. Consider a plaqutte operator :

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 (15)

This plaquette operator has several nice proverties:
(i) Wp has eigenvalues wp = ±1
Follows from Pauli algebra:
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σai
2 = 1, [σai , σ

b
j ] = 2iδijε

abcδcj

Hence W 2
p = 1, wp = ±1

(ii) Wp on different plaquettes commute with each other: [Wp,Wp′ ] = 0. This
follow directly from Pauli algebra.

(iii) Wp commutes with Hamiltonian: [Wp, H] = 0
WLOG, we look at the bond (1,2) that coincides with a particular Wp.

[Wp, H] = [Wp, σ
c
1σ
c
2] = [σa1σ

b
2, σ

c
1σ
c
1] = [σa1 , σ

c
1]σc2σ

b
2 + σa1σ

c
1[σb2, σ

c
2]

= 2i(−σb1σc2σb2 + σa1σ
c
1σ
a
2 ) = −2(σb1σ

a
2 − σb1σa2 ) = 0

where {a,b,c} are in cyclic order.

To be consistent with the Majorana representation, we are tempted to rewrite
Wp in terms of Majorana previously defined. Fantastically, we can apply the
constraint along with rewriting Wp in Majoranas! That is:

W̃p =
∏

〈jk〉∈∂p

ûjk (j ∈ A sublattice, k ∈ B sublattice) (16)

where ∂p is the boundary of a plaquette p.
To show this, we substitute each spin operator in terms of its Majorana map
defined in Eq.(7):

W̃p = σ̃x1 σ̃
y
2 σ̃

z
3 σ̃

x
4 σ̃

y
5 σ̃

z
6 = (ibx1c1)(iby2c2)(ibz3c3)(ibx4c4)(iby5c5)(ibz6c6) (17)

Now we are well-prepared to apply the constraint defined in Eq.(13)! We wish
to enforce bxi b

y
i b
z
i ci ≡ 1, in other words, to enforce

bxi b
y
i b
z
i ≡ ci (18)

This is done by applying an ci operator on both sides and noting that ci is a
Majorana operator which gives c2i = 1. Therefore we can rewrite W̃p as follows:

W̃p = (ibx1c1)(iby2c2)(ibz3c3)(ibx4c4)(iby5c5)(ibz6c6)

= i(bx1b
x
1b
y
1b
z
1)(iby2b

x
2b
y
2b
z
2)(ibz3b

x
3b
y
3b
z
3)(ibx4b

x
4b
y
4b
z
4)(iby5b

x
5b
y
5b
z
5)(ibz6b

x
6b
y
6b
z
6)

= i(by1b
z
1)(ibx2b

z
2)(ibx3b

y
3)(iby4b

z
4)(ibx5b

z
5)(ibx6b

y
6)

= (ibz2b
z
1)(ibx2b

x
3)(iby4b

y
3)(ibz4b

z
5)(ibx6b

x
5)(ibz6b

z
1)

= û21û23û43û45û65û61

=
∏

〈jk〉∈∂p

ûjk for j ∈ A & k ∈ B

(19)

W̃p has several nice properties:

(i) [W̃p, ûij ] = 0
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So we can specify eigenvalues simultaneously.

(ii) W̃p commute with Hamiltonian: [W̃p, H] = 0.
This follows directly from that different link operators commute, and is consis-
tent with the spin representation.

(iii) Wp commute with gauge operator: [W̃p, Di] = 0

Therefore we can label the ground states in terms of eigenvalues of W̃p on all

plaquettes! All eigenstates of plaquette operators W̃p belongs to the physical
Hilbert space L since it is defined along with the constraint in Eq.(18). In other
words: ∣∣ψ{wp}〉 = PL̃→L

∣∣ψ{uij}〉 (20)

It is important to point out that this projection only project a state in L̃ into
L, yet does not effect eigenvalues E. Since the eigenvalue of a physical state
|ψp(E)〉 is determined only by {wp}. So to look at dispersion relation, we don’t
have to play this projection.

So we have a procedure for finding the full solution, i.e. the eigenstates and
eigen values of H:

1. Fix a set of {wp} for all plaquettes, which defines a physical eigenstate.

2. For such a state defined by (1), there are many ujk which give the same
{wp} configuration. Find one valid configuration of {ujk}.

3. Diagonalize the quadratic Hamiltonian and find eigen energy E.

4. Project into L and get the corresponding eigenstate |ψp(E)〉.

5. Repeat 1 - 4. To find ground state, look at minimum E.

It is worth pointing out that the model is actually an emergent Z2 gauge theory.
Each Di operator flips the sign of all 3 links that are connected to site i, on which
Di acts. The physical states can retreived by a series of gauge transformation
defined by Di, which eventually should reach a state that satisfies Di |ψ〉 =
|ψ〉. The action of this gauge operator keeps the states in the same vortex
configuration, while symmetrize the state in link sector uij by constructing an
equal weight superposition of all {uij} configuration. See Fig.3.

4 Ground state energy

According to H. Lieb[3], the ground state of this system has to be vortex-free
(v.f.), i.e. wp = +1 for all plaquettes. This Greatly simplify the problem
at hand. Our goal now is to find the energy dispersion which isn’t effect by
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Figure 3: In the Z2 gauge field, each Di operator flips the sign of all 3 uij links
that are connected to site.We can denote uij = −1 by a string perpendicular
to the link. In this string-net picture, the string must end at vortex wp = −1,
unless it forms a closed loop as shown in the upper left corner. [2]

the gauge, we can trivially satisty wp = +1 by setting all link variables to be
ujk = +1. Now we begin diagonalize the Majorana Hamiltonian:

H̃v.f. = i
∑
〈jk〉α

Kαcjck (21)

where ujk are set to be +1 for all links. Note by fixing the link configuration
the Majorana Hamiltonian becomes translationally symmetric!
The system has a discrete translational symmetry under ~r = ~r + n1~a1 + n2~a2
for integer ni, in the honeycomb lattice the basis vectors ~ai are:

~a1 =
a

2
(
√

3, 3)

~a2 =
a

2
(−
√

3, 3)
(22)

where a is the lattice constant. We can rewrite the Hamiltonian as:

H̃v.f. = i
∑
j∈A

∑
δ

Kαcjcj+δ (23)

where δ indicates 3 nearest neighbors of site j:

δx =
a

2
(
√

3, 1)

δy =
a

2
(−
√

3, 1)

δz = a(0,−1)

(24)
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Go to momentum space by Fourier transform:

cj =
1√
N

∑
~k

ei
~k·~rja~k; a~k =

1√
N

∑
j∈A

e−i
~k·~rjcj

ck =
1√
N

∑
~k

ei
~k·~rkb~k; b~k =

1√
N

∑
k∈B

e−i
~k·~rkck

(25)

with the orthogonality: ∑
j∈A

e(
~k−~k′)·~rj = Nδ~k~k′ (26)

Plug these into the vortex-free Hamiltonian:

H̃v.f. =
i

N

∑
j∈A

∑
~k,~k′

∑
δ

Kδe
i~k·~rja~ke

−i~k′·(~rj+δ)b−~k′

=
∑
~k,~k′

∑
δ

(∑
j∈A

1

N
ei(
~k−~k′)·~rj

)
Kδ i e

−i~k′·δa~kb−~k′

=
∑
~k

(∑
δ

Kδe
−i~k·δ

)
i a~kb−~k

≡
∑
~k

if∗(~k)a~kb−~k

(27)

where we have defined f(~k) =
∑
δKδe

i~k·~δ. Due to the symmetry in momentum
space, we can re-arange the above equation as:

H̃v.f. =
∑
~k

if∗(~k) a~kb−~k =
1

2

∑
~k

if(~k)a−~kb~k − if
∗(~k)b−~ka~k

=
∑
~k

Ψ†~k
ĥ~kΨ~k

(28)

where we have defined:

Ψ~k =

[
a~k
b~k

]
, ĥ~k =

1

2

[
0 if(~k)

−if∗(~k) 0

]
(29)

Now the Hamiltonian is block diagonal in terms of ĥ~k, we can extract the eigen

value by diagonlizing the block ĥ~k, which is simply:

ε(~k) = ±1

2
|f(~k)| (30)

Note that the equation we derived above is not periodic in reciprocal space:
ĥ~k 6= ĥ~k+~G, we apply a simple gauge transformation to recover the periodicity.
Note that in the honeycomb lattice:

~δ2 − ~δ1 = −~a1, ~δ2 − ~δ1 = −~a1 (31)
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Apply a gauge transformation f(~k)→ f̃(~k) and b(a)~k → b̃(ã)~k by:

b̃~k = iei
~k·~δ1b~k, ã~k = a~k, f̃(~k) = ie−i

~k·~δ1f(~k) (32)

where, by applying Eq.(31), we have:

f̃(~k) = i
(
Kz +Kye

i~k·(~δ2−~δ1) +Kxe
i~k·(~δ3−~δ1)

)
= i(Kz +Kye

−i~k·~a2 +Kxe
−i~k·~a1)

(33)

It’s readily to see Eq.(33) is indeed periodic in reciprocal lattice.

The system is in its gapless phase when there exists solutions for ε(~k) = 0 for
particular triplets of {Kα} , and is gapped otherwise. In fact, One can show
that the gapless phase must satisfy the triangle inequalities:

|Kx| ≤ |Ky|+ |Kz|, |Ky| ≤ |Kx|+ |Kz|, |Kz| ≤ |Kx|+ |Ky| (34)

The full phase diagram is summarized in the triangular plot as follows:

Figure 4: The phase diagram of Kitaev’s Hamiltonian with Kx +Ky +Kz = 1.
The central triangle B is gapless in which the center denotes Kx = Ky = Kz.
The other 3 outer triangles are gapped phases with gap width indicated in the
colorbar. [4]

In particular, the geometry of dispersion at the center of triangle B where
Kx = Ky = Kz is exactly identical to graphene (though it is dispersion of
majorana).
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Figure 5: Energy dispersion at Kx = Ky = Kz is identical to graphene

5 Toric code limit

5.1 From Honeycomb to Toric code Hamiltonian

Amazingly, the Kitaev’s honeycomb is an effective Toric code Hamiltonian at
high anisotropic regime, where one of the Kα go to ∞. According to Kitaev’s
derivation derivation [1], at 4th order perturbation of Kitaev Honeycomb model:

H
(4)
eff = cons−

K2
xK

2
y

16K3
z

∑
p

Qp (35)

where p runs over the square lattice plaquettes of the dimer lattice.

Qp = σyp1σ
z
p2σ

y
p3σ

z
p4 (36)

On the new square lattice (TC lattice), the plaquettes in old lattice become
plaquettes and stars. So the effective Hamiltonian becomes:

Heff = −Jeff
(∑

s

Q̃s +
∑
p

Q̃p

)
(37)

Note here Q̃s, Q̃p are still in the same form of the original Qp defined in Eq.7,
since by now, we only changed the representation of the lattice vectors rather
than spins. These two operators has a mixing of σy and σx, but we can apply
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an unitary transformation to eliminate this mixing. We can define a unitary
transformation that rotates the above Hamiltonian into the TC model. To do
that, let us first look at the degrees of freedom in real space:

(a) (b)

1

2

3

4

Figure 6: An illastration of mapping to the new square lattice embedded on a
torus, with the purple dashed lines defining the pairs of equivalent sides. The
blue square in (a) is mapped into the blue star in (b), while the red square in
(a) remains a red square in (b). The label convention is as showed in the small
square at the middle.

We can rotate the hilbert space so that Q̃p = σyp1σ
z
p2σ

y
p3σ

z
p4 becomes Q̃′p =

σzp1σ
z
p2σ

z
p3σ

z
p4 on red plaqutte, and Q̃s = σyp1σ

z
p2σ

y
p3σ

z
p4 becomes Q̃′p = σxp1σ

x
p2σ

x
p3σ

x
p4 .

This can be achieved if we do the following rotation respectively of • and ◦ sites.

σx• → σy• , σy• → σz• , σz• → σx•

σx◦ → −σy◦ , σy◦ → σx◦ , σz◦ → σz◦
(38)

We thus recover the Toric code Hamiltonian:

HTC = −J1
∑
c

Av − J2
∑
p

Bp (39)

where
Av =

∏
v

σxi , Bp =
∏
p

σzi (40)

5.2 Topological Entanglement Entropy of Toric code

Let’s partition the system in to 2 parts: {Ain, Aout}, where Ain/out is in-
side/outside of A’s boundry. The wavefunction are respectively |ψin〉 and |ψout〉.
Further let’s suppose the boundry that separates two areas consists of L links,
which is labeled by h ≡ {h1, h2, h3, ...hL}. Note that hm = 0 or 1.

Given a particular h, the wavefunctions is then described by |ψin,h〉 and |ψout,h〉,
since h can be viewed as a boundry condition of both in and out states, the
wavefunction must be h-dependent.
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Figure 7: An illastration of partition of TC lattice. The full Hilbert space can
be factorized as in and out lattice. the full wavefunction is {h}-dependent.

The full wave function |Ψ〉 is then:

|ΨTC〉 =
∑
h

∑
in,out

Cin,out |ψin,h〉 ⊗ |ψout,h〉 (41)

We can apply a Schmitdt decomposition (See Appendix) to the inner summa-
tion: ∑

in,out

Cin,out |ψin,h〉 |ψout,h〉 =
∑
φ

Dφ |φin,h〉 |φout,h〉 (42)

where Dφ is an abbrev. of the diagonal matrix Dφ,φ′δφ,φ′ . We now arrive at a
new basis at which the full wavefunction is diagonal in terms of in/out states.
Note that the diagonal matrix Dφ is in fact an Identity matrix (up to constant).
This is because all orbitals must be equal weight. To see this, recall that the
Star operator doesn’t change the ground state:

Av |Ψ〉 = |Ψ〉 (43)

i.e.
Av
∑
φ

Dφ |φ〉 =
∑
φ

Dφ |φ〉

This is true if and only if all Dφ are equal of each orbit. Hence the full wave-
function becomes:

|ΨTC〉 =
∑
h

∑
φ

|φin,h〉 |φout,h〉 (44)

Since the full wavefunction |ΨTC〉 is diagonal in both φ and h, and the sum-
mation is over all possible configurations. According to the uniqueness of the
diagonal basis, we can manually set φ ≡ δh,φ, and

∣∣φin/out,h〉 ≡ ∣∣ψin/out,h〉
without changing the physical state. That is:
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|ΨTC〉 =
∑
h

∑
φ

δh,φ |ψin,h〉 |ψout,h〉 =
∑
h

|ψin,h〉 |ψout,h〉 (45)

This is great, because it’s diagonal, and there’re no redundent notation anymore.
since the summation over h is constrained by

∑L
i hi = even number, Eq.5 can

be rewrite as:
|ΨTC〉 =

∑
{
∑
h=2n}

|ψin,h〉 |ψout,h〉 (46)

where n is a positive integer.

Now by counting the number of elements in {
∑
i hi = even number}, we are

able to tell the number of states. since h = 0, 1, the number of elements is
simply 1

2 × 2L = 2L−1. Then the entropy is:

S ∝ log 2L−1 = L log 2− log 2 (47)

The first term is obviously from the area law, the second being the topological
entanglement entropy.

γ = − log 2 (48)
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Appendix

1 The Schmitdt Decomposition

Suppose Ψ is a matrix state produced by the inside and the outside, with di-
mensions DA ×DB .

|Ψ〉 =
∑
ij

ψij |i〉 |j〉 .

This can be factorized as
|Ψ〉 = UDV †.

Suppose DB < DA, and ψij are entries of matrix Ψ after the factorization by
SVD, ψij can be written as:

ψij =

DB∑
α

Uiαλα(V †)αj =

DB∑
α

UiαλαV
∗
αj .

Now plug this ψij into |Ψ〉 in the original basis expression:

|Ψ〉 =

DA∑
i

DB∑
j

DB∑
α

UiαλαV
∗
αj |i〉 |j〉 .

This again can be factorized:

|Ψ〉 =

DB∑
α

(

DA∑
i

Uiα |i〉)λα(

DB∑
j

V ∗αj |j〉) =

DB∑
α

λα |α〉A |α〉B .
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