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In Kitaev’s honeycomb model, it is known that vortex (flux) excitation has non-Abelian statistics
which makes the model one of the candidates for topological quantum computation. In this draft, I
demonstrate that it is not the vortex excitation par se that are responsible for the non-Abelianess,
but the majorana particles bounded to these vortices which give the non-Abelian behavior of
vortices. Indeed, the chiral spin liquid by gapping out the complex fermion modes in Kitaev model
has a non-zero Chern number, indicating the existence of half-quantized chiral majorana modes
living on magnetic defects or Z2 flux excitation. Two such fluxes distant apart then become the
non-local bearer of a complex fermion mode by having one majorana attached to each flux. The
most striking behavior in Kitaev model is that the majorana modes carried by these fluxes exhibit
non-Abelian statistics which can be exploited to make quantum gates in the fermion parity subspace
– since complex fermions here effectively form px+ ipy superconductor. In the coming text I review
how to perceive the non-Abelian behavior by manipulating localized majoranas. More details can
be found in the friendly reference Pachos (2012).

1 Fusion

Let us think of four localized majorana γ1, γ2, γ3, γ4 that lives at four vortices distant apart from
each other. Alone, an isolated majorana is not physical, however, we can group them into pairs
such that two majoranas are combined into fermionic modes. There are two ways to group these
four majoranas, as shown in Fig. 1. Let us then define these fermion modes as

Figure 1: Left: Four majoranas can make different fermionic modes. Right: microscopic realization
in Kitaev model
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z1 =
1

2
(γ1 + iγ2), z2 =

1

2
(γ3 + iγ4), w1 =

1

2
(γ1 + iγ3), w2 =

1

2
(γ2 + iγ4) (1)

which satisfies the anti-commutation relation:

{γi, γj} = 2δij , {zi, z†j} = 1, {wi, w†
i } = 1 (2)

However, it is interesting and important to note that the two fermionic modes z and w are not
independent, such that {zi, wi} 6= 0, since the the two modes share a common majorana. It is
simple to check the following

{z1, w1} = {1

2
γ1,

1

2
γ1} =

1

2
, {z2, w2} = { i

2
γ4,

i

2
γ4} = −1

2
(3)

We focus on the subspace of even fermion parity, i.e. fermionic modes fuse to the vacuum. This is
the case, for example, in a SC where two fermions form a Cooper pair. We consider the fermion
occupation basis:

|ij〉z ≡ |i〉z ⊗ |j〉z , |ij〉w ≡ |i〉w ⊗ |j〉w i, j ∈ {0, 1} (4)

As w and z modes are not independent, the modes in z basis can be written as a linear combination
of modes in w basis, for example

|00〉z = α |00〉w + β |11〉w (5)

and so on. This allows us to connect occupation modes in different basis by number operators.
To appreciate this point, we first note that the number operators of these modes can be viewed as
projectors: z†i zi and w†

iwi projects out the zero population states, while ziz
†
i and wiw

†
i projects out

the populated states. To be clear, it is readily to check the following:

z†i zi |00〉z = 0, ziz
†
i |00〉z = (1− z†i zi) |00〉z = |00〉z (6)

z†i zi |11〉z = |11〉 , ziz
†
i |11〉z = (1− z†i zi) |11〉z = 0 (7)

and the projectors made of w and w† can be constructed by the same token:

w†
iwi |00〉w = 0, wiw

†
i |00〉w = (1− w†

iwi) |00〉w = |00〉w (8)

w†
iwi |11〉w = |11〉 , wiw

†
i |11〉w = (1− w†

iwi) |11〉w = 0 (9)

Therefore, as an example, it is now readily to see that the operator w†
1w1 projects the state |00〉z

and |11〉z onto |11〉w, because

w†
1w1 |00〉z = w†

1w1(α |00〉w + β |11〉w) ∝ |11〉w (10)

w†
1w1 |11〉z = w†

1w1(α
′ |00〉w + β′ |11〉w) ∝ |11〉w (11)

and similarly, we have the projector w1w
†
1 which selects out |00〉w:

w1w
†
1 |00〉z = w1w

†
1 |11〉z = |00〉w (12)

Next, we would like to figure out the relation between them. In other words, we need to find the
following matrix elements Fij :

|11〉w = F01 |00〉z , |11〉w = F11 |11〉z , |00〉w = F00 |00〉z , |00〉w = F10 |11〉z (13)
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We start from the construction of F10. Let us look at the state given by (2w†
1w1 − 1) |00〉z first.

What is the occupation in the z basis? It is straightforward to calculate the following:

z†1z1(2w
†
1w1 − 1) |00〉z = (2w†

1w1 − 1)(1− 2z†1z1) |00〉z = (2w†
1w1 − 1) |00〉z (14)

in other words, (2w†
1w1 − 1) |00〉z is a non-trivial eigen state of occupation number z†1z1. Hence, in

the even parity subspace we have but one choice:

|11〉z = (2w†
1w1 − 1) |00〉z (15)

Note that the operator w†
1w1 projects the state |00〉z into |11〉w, we can rewrite the above relation

as:
|11〉w ∝ 2w†

1w1 = |11〉z + |00〉z (16)

After nomalization we have

|11〉w =
√

2w†
1w1 |00〉z =

1√
2

(|00〉z + |11〉z) (17)

We can now apply the anti-commutation {wi, w†
i } = 1 to Eq. 17, and arrive at

√
2(1− w1w

†
1) |00〉z =

1√
2

(|00〉z + |11〉z) ⇒
√

2w1w
†
1 |00〉z =

1√
2

(|00〉z − |11〉z) (18)

since w1w
†
1 projects |00〉z onto |00〉w, we have

|00〉w =
√

2w1w
†
1 |00〉z =

1√
2

(|00〉z − |11〉z) (19)

Hence the two set of fermionic modes are related by the matrix(
|00〉w
|11〉w

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)(
|00〉z
|11〉z

)
(20)

up to an exchange of basis vectors. This is the fusion matrix F

F =
1√
2

(
1 −1
1 1

)
(21)

2 Braiding

Let us now turn to the braiding properties of majoranas γi and γj , shown schematically in Fig.
2(a). The unitary operator that can act on the majorana state is given by

U =
eiθ√

2
(1 + γiγj), U ′ =

eiφ√
2

(γi + γj) (22)

It is easy to check that these unitary transformations exchange two majoranas:

UγiU
† = γj , U ′γiU

′† = γj (23)
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Figure 2: (a) The exchange of two majoranas, γi and γj . (b) Four majoranas that give rise to
two fermionic modes z1 and z2. The occupation states of these two modes |ij〉z can be changed
from one into another by, for example, braiding γ1 around γ3 by exchanging twice via U2. (c) the
corresponding process illustrated in Kitaev’s honeycomb lattice.

The U ′ operator is Abelian, since U ′2 = ei2φ which is just a phase factor. On the other hand, the
U operator is non-Abelian isnce U2 = e2iθγiγj is still another operation.

Now we would like to know how does braiding change the fermionic states. Consider the
operation U2 = e2iθγ1γ3 which exchanges γ1 and γ3 twice, making an effective 2π braiding between
these majoranas. Since we are interested in how braiding affect the fermionic space, we convert the
majoranas back to fermion occupation states:

γ1 = ..., γ3 = ... (24)

giving us
U2 = e2iθγ1γ3 = e2iθ(z1z2 + z1z

†
2 + z†1z2 + z†1z

†
2) (25)

as is shown in Fig. 2(b). Hence U2 is a gate that switch between states:

U2 |00〉z = |11〉z , U2 |11〉z = |00〉z (26)

U2 |01〉z = |10〉z , U2 |10〉z = |01〉z (27)

therefore, U2 is an exchange matrix upto a phase factor:

U2 ∼ σx (28)

which is the expected non-Abelian action of the Ising anyon. Next let us figure out the phase factor
θ. This can be done by considering a sequence of braiding between three majoranas, as shown
in Fig. 3. In this composite braiding, initially γ1 braids around γ2 and γ3 in clockwise direction,
denoted by operation B1. Then γ2 and γ3 fuse into a fermion α = (γ2+iγ3)/2, and γ1 braids around
the fused α in counter clockwise direction thereafter. Note that the braiding in full is trivial, since
the CW braiding is undone by CCW braiding, giving

B2B1 = 1 (29)

however, B2 and B1 is a function of θ, which allows us to extract the phase factor by the above
constraint. The braiding between γ1 and the pair of γ2, γ3 is

B1 = U1
13U

2
12 = ei4θγ2γ3 (30)
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Figure 3: Braiding between three majoranas, which can be divide into two steps. B1: braiding γ1
across γ2 and γ3 CW; and B2: fuse γ3 and γ3 into a fermion α ∝ γ2 + iγ3, and braid γ1 across α
CCW. The time axis goes from top to bottom.

the braiding between γ1 and α is given by

B2 = 1− 2α†α = iγ2γ3 (31)

which comes from the fact that the exchange between a majorana and a canonical fermion produces
a phase factor i. Hence we have

B2B1 = −iei4θ = 1 ⇒ θ =
π

8
(32)

and the exact braiding matrix for Fig. 2(b) is thus

U2 = ei
π
4 σx (33)
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