Entanglement of Free Fermions

Shi Feng

1 Analytical Results

Due to Pauli exclusion, momentum ket of different fermions must be different. So for n free fermions there has to be n different momentum states $e^{i k_{j} r}$ that are mutually orthogonal. For simplicity, I denote them as $\left|k_{j}\right\rangle_{r_{j}}$, which means j-th particle at position r_{j} whose unique (w.r.t. other particles) momentum is k_{j}. Then the wavefunction of n free fermions is the Slater determinant:

$$
\left|\Psi_{n}\right\rangle=\mathcal{A}\left(\left|k_{1}\right\rangle_{r_{1}}\left|k_{2}\right\rangle_{r_{2}} \ldots\left|k_{n}\right\rangle_{r_{n}}\right)=\operatorname{det}\left(\begin{array}{cccc}
\left|k_{1}\right\rangle_{r_{1}} & \left|k_{1}\right\rangle_{r_{2}} & \ldots & \left|k_{1}\right\rangle_{r_{n}} \tag{1.1}\\
\left|k_{2}\right\rangle_{r_{1}} & \left|k_{2}\right\rangle_{r_{2}} & \ldots & \left|k_{2}\right\rangle_{r_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\left|k_{n}\right\rangle_{r_{1}} & \left|k_{n}\right\rangle_{r_{2}} & \ldots & \left|k_{n}\right\rangle_{r_{n}}
\end{array}\right)
$$

where \mathcal{A} is the anti-symmetrizer which is equivalent to the Slater determinant. To evaluate the determinant we expand it in terms of n-permutation group S_{n} :

$$
\begin{equation*}
\left|\Psi_{n}\right\rangle=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \bigotimes_{i=1}^{n}\left|k_{\sigma(i)}\right\rangle_{r_{i}} \tag{1.2}
\end{equation*}
$$

where $\operatorname{sgn}(\sigma)$ is +1 for even permutations, and -1 for odd permutations. In this representation the density matrix is

$$
\begin{equation*}
\rho=\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|=\sum_{\sigma, \sigma^{\prime} \in S_{n}} \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{\prime}\right) \bigotimes_{i, j=2}^{n}\left|k_{\sigma(i)}\right\rangle_{r_{i}}\left\langle\left. k_{\sigma^{\prime}\left(i^{\prime}\right)}\right|_{r_{i^{\prime}}}\right. \tag{1.3}
\end{equation*}
$$

Now we'd like to find the reduced density matrix of the first m particles, that is, we want to trace out momentum kets which are identified by $r_{j}, j \geq m+1$.

$$
\begin{align*}
\rho_{s} & =\sum_{\tilde{\sigma}} \bigotimes_{j=m+1}^{n} r_{j}\left\langle k_{\tilde{\sigma}(j)} \mid \Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \bigotimes_{j=m+1}^{n}\left|k_{\tilde{\sigma}(j)}\right\rangle_{r_{j}} \\
& =\sum_{\sigma \in S_{n}} \bigotimes_{i=1}^{m}\left|k_{\sigma(i)}\right\rangle \bigotimes_{i^{\prime}=1}^{m}\left\langle\left. k_{\sigma\left(i^{\prime}\right)}\right|_{r_{i^{\prime}}}\right. \tag{1.4}
\end{align*}
$$

where we ignored the constant $\operatorname{sgn}^{2}(\sigma)=1$. Details are attached in Appendix.
In the simplest case, where the system is assigned only with the first particle i.e. $m=1$, all the rest (from $i=2$ to n) are environment to be traced out. The single fermion reduced density matrix becomes

$$
\begin{equation*}
\rho_{s}^{(1)}=\sum_{\sigma \in S_{n}}\left|k_{\sigma(1)}\right\rangle\left\langle k_{\sigma(1)}\right| \tag{1.5}
\end{equation*}
$$

upto a global normalization factor. It's readily to see that the reduced density matrix is diagonal in this basis. Also all diagonal elements are equally weighed, since the number of configurations $\mathbb{N} \ni \forall i=\sigma(1)$ are the same. After normalization, all diagonal elements becomes $1 / n$. So the entanglement entropy for n free fermions is:

$$
\begin{equation*}
S_{E}^{(1)}(n)=-\sum_{i}^{n} \frac{1}{n} \log \left(\frac{1}{n}\right)=\log (n) \tag{1.6}
\end{equation*}
$$

For $m>1$, reduced density matrix reads

$$
\begin{equation*}
\rho_{s}^{(m)}=\sum_{\sigma \in S_{n}}\left(\bigotimes_{i=1}^{m}\left|k_{\sigma(i)}\right\rangle\right)\left(\bigotimes_{i^{\prime}=1}^{m}\left\langle k_{\sigma\left(i^{\prime}\right)}\right|\right) \tag{1.7}
\end{equation*}
$$

This is still diagonal with equal elements $1 / d$. However the dimension of matrix is dependent on both n and m. The dimension d of this $d \times d$ square matrix is determined by

$$
\begin{equation*}
d=C_{n}^{m}=\frac{n!}{m!(n-m)!} \tag{1.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
S_{E}^{(m)}=-\sum_{i}^{d} \frac{1}{d} \log \left(\frac{1}{d}\right)=\log \left[\frac{n!}{m!(n-m)!}\right]=\log (n!)-\log (m!)-\log [(n-m)!] \tag{1.9}
\end{equation*}
$$

By Stirling's approximation $\log (n!) \approx n \log n-n$, this becomes

$$
\begin{align*}
S_{E}^{(m)} & \approx n \log n-n-m \log m+m-[(n-m) \log (n-m)-(n-m)] \\
& =n \log n-m \log m-n \log (n-m)+m \log (n-m) \\
& =m[\log (n-m)-\log m]+n[\log n-\log (n-m)] \\
& =m \log \left(\frac{n}{m}-1\right)+n \log \left(\frac{n}{n-m}\right) \tag{1.10}\\
& \approx m \log \left(\frac{n}{m}\right)-n \log \left(1-\frac{m}{n}\right) \\
& \approx m \log \left(\frac{n}{m}\right)+m \\
& \approx m \log \left(\frac{n}{m}\right)
\end{align*}
$$

where we assumed $n \gg m \gg 1$. This result is consistent with former result on $m=1$.

Here I make a very rougth estimation of EE scaling: suppose there is a macroscopic amount of free fermions uniformly distributed in d-dimensional space. Assuming particle density $\rho=1$ i.e. 1 per unit volumn, and use the length scale of universe as the measure, then $n \gg m$ indicates the length scale of system is $\mathcal{L} \rightarrow 0$. So the EE of system is approximated by

$$
\begin{equation*}
S_{E}^{(m)}(\mathcal{L}) \approx \mathcal{L}^{d} \log \left(\frac{1}{\mathcal{L}}\right)^{d} \sim \mathcal{L}^{d} \log \left(\frac{1}{\mathcal{L}}\right) \tag{1.11}
\end{equation*}
$$

$\log (1 / \mathcal{L})$ above is large for small system size, nonetheless it is bounded by

$$
\begin{equation*}
\log \left(\frac{1}{\mathcal{L}}\right)<\frac{1}{\mathcal{L}} \tag{1.12}
\end{equation*}
$$

so we have

$$
\begin{equation*}
S_{E}(\mathcal{L})<\mathcal{L}^{d-1} \tag{1.13}
\end{equation*}
$$

This result holds for uniformly distributed free fermions and $n \gg m>1$ (universe \gg system size).

2 Numerical Results

In this section I present the numerical results on the Slater determinant of 27 free fermions. First Linear-Linear scale, then Exp-Linear scale. From the Exp-Linear plot it's readily to see that the results are in good agreement with Eq.(1.6).

Figure 1: Number of fermions vs. Entanglement entropy (Linear-Linear). Results obtained by tracing all but the 1st particle

Figure 2: Number of fermions vs. Entanglement entropy (Exp-Linear). Results obtained by tracing all but the 1st particle

3 Appendix

Here I present the detailed derivation. In order to evaluate:

$$
\begin{equation*}
\rho_{s}=\sum_{\tilde{\sigma}} \bigotimes_{j=m+1}^{n} r_{j}\left\langle k_{\tilde{\sigma}(j)} \mid \Psi_{n}\right\rangle\left\langle\Psi_{n}\right| \bigotimes_{j=m+1}^{n}\left|k_{\tilde{\sigma}(j)}\right\rangle_{r_{j}} \tag{3.1}
\end{equation*}
$$

Let's first look at the right-most braket:

$$
\begin{aligned}
\left\langle\Psi_{n}\right| \bigotimes_{j=m+1}^{n}\left|k_{\tilde{\sigma}(j)}\right\rangle_{r_{j}} & \left.=\sum_{\sigma^{\prime} \in S_{n}} \operatorname{sgn}\left(\sigma^{\prime}\right) \bigotimes_{i^{\prime}=1}^{m} r_{i^{\prime}}\left\langle k_{\sigma^{\prime}\left(i^{\prime}\right)}\right|\left(\left.\bigotimes_{i^{\prime}, j=m+1}^{n} r_{i^{\prime}}\left\langle k_{\sigma^{\prime}\left(i^{\prime}\right)}\right|\right|_{\tilde{\sigma}(j)}\right\rangle_{r_{j}}\right) \\
& =\sum_{\sigma^{\prime} \in S_{n}} \operatorname{sgn}\left(\sigma^{\prime}\right) \bigotimes_{i^{\prime}=1}^{m} r_{i^{\prime}}\left\langle k_{\sigma^{\prime}\left(i^{\prime}\right)}\right| \delta_{\sigma^{\prime}, \tilde{\sigma}}
\end{aligned}
$$

The left-most braket of Eq.(3.1) is

$$
\begin{align*}
\bigotimes_{j=m+1}^{n} r_{j}\left\langle k_{\tilde{\sigma}(j)} \mid \Psi_{n}\right\rangle & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)\left(\bigotimes_{i, j=m+1}^{n} r_{j}\left\langle k_{\tilde{\sigma}(j)} \mid k_{\sigma(i)}\right\rangle_{r_{i}}\right) \bigotimes_{i=1}^{m}\left|k_{\sigma(i)}\right\rangle_{r_{i}} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \bigotimes_{i=1}^{m}\left|k_{\sigma(i)}\right\rangle_{r_{i}} \delta_{\tilde{\sigma}, \sigma} \tag{3.2}
\end{align*}
$$

so Eq.(3.1) becomes

$$
\begin{align*}
\rho_{s} & =\sum_{\tilde{\sigma}, \sigma, \sigma^{\prime} \in S_{n}} \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{\prime}\right) \bigotimes_{i, i^{\prime}=1}^{m}\left|k_{\sigma(i)}\right\rangle_{r_{i}}\left\langle\left. k_{\sigma^{\prime}\left(i^{\prime}\right)}\right|_{r_{i^{\prime}}} \delta_{\tilde{\sigma}, \sigma} \delta_{\sigma^{\prime}, \tilde{\sigma}}\right. \tag{3.3}\\
& =\sum_{\sigma \in S_{n}} \bigotimes_{i=1}^{m}\left|k_{\sigma(i)}\right\rangle \bigotimes_{i^{\prime}=1}^{m}\left\langle\left. k_{\sigma\left(i^{\prime}\right)}\right|_{r_{i^{\prime}}}\right.
\end{align*}
$$

