From Correlation to Entanglement

Shi Feng

January 10, 2022

In this writeup, I'm going to show the relation between reduced density matrix and the correlation function of fermion modes.

First of all, I need to show that the correlation $A_{m n}=\left\langle a_{m}^{\dagger} a_{n}\right\rangle$ within a block of L sites has nothing to do with its environment part of density matrix. This is explained in the appendix. As a result, the correlation matrix can be expressed as

$$
\begin{equation*}
A_{m n}=\operatorname{Tr}\left(a_{m}^{\dagger} a_{n} \rho_{L}\right) \tag{1}
\end{equation*}
$$

Our goal is to invert this equation, i.e. to compute the $\operatorname{RDM} \rho_{L}$ by correlation matrix $A_{m n}=$ $\left\langle a_{m}^{\dagger} a_{n}\right\rangle$.

The matrix $A_{m n}$ is neccessarily Hermitian, since $A^{\dagger} \equiv A_{n m}^{*}=\left\langle a_{n}^{\dagger} a_{m}\right\rangle^{*}=\left\langle\left(a_{n}^{\dagger} a_{m}\right)^{\dagger}\right\rangle=$ $\left\langle a_{m}^{\dagger} a_{n}\right\rangle=A_{m n}$. So $A_{m n}$ can be diagonalized by a unitary transformation $G=U A U^{\dagger}$:

$$
\begin{align*}
G_{p q} & =\sum_{m, n} U_{p m} A_{m n} U_{n q}^{*}=\sum_{m, n} U_{p m}\left\langle a_{m}^{\dagger} a_{n}\right\rangle U_{n q}^{*} \\
& =\left\langle\left(\sum_{m} U_{p m} a_{m}^{\dagger}\right)\left(\sum_{n} a_{n} U_{n q}^{*}\right)\right\rangle \tag{2}\\
& \equiv\left\langle g_{p}^{\dagger} g_{q}\right\rangle \delta_{p q}
\end{align*}
$$

where the $\delta_{p q}$ comes from the fact that $G_{p q}$ is diagonal. Now if we point to some element (m, n) of $A_{m n}$, the element $G_{m n}$ corresponding to the same index must satisfy

$$
\begin{equation*}
G_{m n}=\sum_{m, n} U_{m m} \operatorname{Tr}\left(a_{m}^{\dagger} a_{n} \rho_{L}\right) U_{n n}^{*}=\operatorname{Tr}\left(g_{m}^{\dagger} g_{n} \rho_{L}\right) \tag{3}
\end{equation*}
$$

It's readily to see that g_{m} satisfies fermionic anti-commuatation: $\left\{g_{n}, g_{m}^{\dagger}\right\}=\left\{\sum_{i} U_{n i} a_{i}, \sum_{j} a_{j}^{\dagger} U_{j m}^{*}\right\}=$ $\sum_{i j} U_{n i} U_{j m}^{*}\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{n m}$. This amounts to

$$
\begin{equation*}
G_{m n}=\nu_{m} \delta_{m n} \tag{4}
\end{equation*}
$$

where $\nu_{m} \equiv\left\langle g_{m}^{\dagger} g_{m}\right\rangle$ is the m-th eigen value of correlation matrix. It's worth pointing out that g_{m} This implies that ρ_{L} is uncorrelated in the occupation number basis of g_{m}^{\dagger}. Hence ρ_{L} can be described by the following:

Theorem 1. In a fermionic lattice model, the block (reduced) density matrix can be factorized under the basis that diagonalizes the correlation matrix $\left\langle a_{m}^{\dagger} a_{n}\right\rangle$:

$$
\begin{equation*}
\rho_{L}=\varrho_{1} \otimes \varrho_{2} \otimes \ldots \otimes \varrho_{L} \tag{5}
\end{equation*}
$$

where ϱ_{m} is the single-mode density matrix corresponding to the m-th fermionic mode, and all ϱ_{m} are neccessarily diagonal.

Let us represent g_{m} and g_{m}^{\dagger} in their matrix representation.
Proof. We've shown that $G_{m n}=\operatorname{Tr}\left(a_{m}^{\dagger} a_{n} \rho_{L}\right)=0$ if $m \neq n$. Since g^{\dagger} creates fermion, we can denote the set of single-mode basis as $\left\{|1\rangle_{m},|0\rangle_{m}\right\}$, the 1 fermion and 0 -fermion respectively. Now we inspect modes m and n, the relevant part of RDM is

$$
\begin{equation*}
\rho_{L}=\sum_{j, j^{\prime}} c_{j j^{\prime}}|j\rangle\left\langle j^{\prime}\right| \tag{6}
\end{equation*}
$$

where $|j\rangle \in\left\{\left|1_{m} 1_{n}\right\rangle,|10\rangle,|01\rangle,|00\rangle\right\}$. The two-point correlation of modes m and n is

$$
\begin{align*}
G_{m n} & =\operatorname{Tr}\left(a_{m}^{\dagger} a_{n} \rho_{L}\right)=\operatorname{Tr}\left(a_{n} \rho_{L} a_{m}^{\dagger}\right) \\
& =\sum_{i}\langle i| g_{n} \rho_{L} g_{m}^{\dagger}|i\rangle=\langle 00| g_{n} \rho_{L} g_{m}^{\dagger}|00\rangle \tag{7}\\
& =\sum_{j j^{\prime}} c_{j j^{\prime}}\left\langle 0_{m} 1_{n} \mid j\right\rangle\left\langle j^{\prime} \mid 1_{m} 0_{n}\right\rangle \stackrel{!}{=} 0
\end{align*}
$$

Now let's pick out matrix elements that do not annihilate the brakets, whose corresponding $c_{j j^{\prime}}$ has to vanish. These are:

$$
|j\rangle\left\langle j^{\prime}\right| \sim\left|0_{m} 1_{n}\right\rangle\left\langle 1_{m} 0_{n}\right|
$$

so the matrix element at $\left|0_{m}\right\rangle\left\langle 1_{m}\right|$ of single-mode RDM ρ_{m}, and the element at $\left|1_{n}\right\rangle\left\langle 0_{n}\right|$ of local $\operatorname{RDM} \rho_{n}$ have to vanish. Also since $G_{m n}$ is diagonal, the other off-diagonal also vanishes. Therefore the only elements that survives are $c_{j j^{\prime}}$ corresponding to

$$
\left\{\left|0_{m}\right\rangle\left\langle 0_{m}\right|,\left|1_{m}\right\rangle\left\langle 1_{m}\right|\right\} \otimes\left\{\left|0_{n}\right\rangle\left\langle 0_{n}\right|,\left|1_{n}\right\rangle\left\langle 1_{n}\right|\right\}
$$

Hence all single-mode RDMs are neccessarily diagonal.
In the aforesaid basis, g_{m}^{\dagger} and g_{m} can be written as

$$
g_{m}=\left(\begin{array}{ll}
0 & 0 \tag{8}\\
1 & 0
\end{array}\right), \quad g_{m}^{\dagger}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and note that the off-diagonal parts of single-mode RDM vanishes according to Theorem.1, we can parameterized ϱ_{m} by a undetermined variable α_{m} :

$$
\varrho_{m}=\left(\begin{array}{cc}
\alpha_{m} & 0 \tag{9}\\
0 & 1-\alpha_{m}
\end{array}\right)
$$

which satisfies $\operatorname{Tr}\left(\varrho_{m}\right)=1$. Then eigen value of correlation matrix ν_{m} and that of single-mode $\mathrm{RDM} \alpha_{m}$ can be related by:

$$
\nu_{m}=\operatorname{Tr}\left(g_{m}^{\dagger} g_{m} \varrho_{m}\right)=\operatorname{Tr}\left[\left(\begin{array}{cc}
1 & 0 \tag{10}\\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\alpha_{m} & 0 \\
0 & 1-\alpha_{m}
\end{array}\right)\right]=\alpha_{m}
$$

where all the rest ϱ_{n} with $n \neq m$ have only trival contribution to the trace. So we have

$$
\begin{equation*}
\nu_{m}=\alpha_{m} \tag{11}
\end{equation*}
$$

Therefore the total entanglement of this block of L sites is given by blocks ϱ_{m} (Theorem.??):

$$
\begin{equation*}
S_{L}=\sum_{l=1}^{L} H_{2}\left(\nu_{l}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{2}\left(\nu_{l}\right)=-\nu_{l} \log \nu_{l}-\left(1-\nu_{l}\right) \log \left(1-\nu_{l}\right) \tag{13}
\end{equation*}
$$

is the binary entropy.

