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Theorem 1. Let |ψ〉 be a pure quantum state of a lattice Hamiltonian. For an operator O that is
supported on one part of the bipartited of lattice the following holds:

〈ψ|O|ψ〉 = Tr(ρiO) (1)

where ρi is the (reduced) density matrix of the selected part of lattice, and the trace is taken over
either states thereof or of the full system (they give the same result).

Proof. The full wavefunction can be decomposed into

|ψ〉 =
∑
i,o

ωi,o |φi〉 |φo〉 (2)

and ρi is

ρi = Tro(|ψ〉 〈ψ|) =
∑
o

〈φo|ψ〉 〈ψ|φo〉

=
∑
i,i′

(∑
o

ωi,o ω
∗
o,i′

)
|φi〉 〈φi′ |

(3)

Measurement tracing density matrix over all |ψi〉 is

Tr(ρiO) =
∑
i

〈φi|ρiO|φi〉

=
∑
i,i′

(∑
o

ωi,o ω
∗
o,i′

)
〈φi′ |O|φi〉

(4)

Note that one can also do a trace over states of the full lattice as long as |φo〉 is normalized, which
doesn’t matter since O acting only on |φi〉. On the other hand, a direct meaure by 〈ψ|O|ψ〉 is

〈ψ|O|ψ〉 =
∑
i′,o′

∑
i,o

ω∗o′i′ωi,o 〈φo′φi′ |O |φiφo〉

=
∑
i,i′

(∑
o

ωi,o ω
∗
o,i′

)
〈φi′ |O|φi〉

(5)

where in the last contraction we used the fact that O is supported on part i of Hilbert space.

Theorem 2. If ρ and ρ′ act on disjoint Hilbert spaces, then the von-Neumann entanglement entropy
satisfies

S(ρ⊗ ρ′) = S(ρ) + S(ρ′)
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Proof. Since entanglement is invariant under change of basis, we can diagonalize ρ and ρ′ and
calculate EE using their diagonal elements:

ρ̃ =
∑
i

ai |ai〉 〈ai| , ρ̃′ =
∑
j

bj |bj〉 〈bj |

so the compoiste matrix used in S(ρ⊗ ρ′) is

ρ̃⊗ ρ̃′ =
∑
ij

aibj |aibj〉 〈bjai|

log
(
ρ̃⊗ ρ̃′

)
=
∑
ij

(log ai + log bj) |aibj〉 〈bjai|

the total entanglement entropy is thus

S(ρ̃⊗ ρ̃′) = −
∑
ij

aibj log(ai) + aibj log(bi)

= −
∑
i

ai log(ai)
∑
j

bj −
∑
j

bj log(bj)
∑
i

ai

= −
∑
i

ai log(ai)− bi log(bi)

= S(ρ̃) + S(ρ̃′)

where we used Tr(ρ) = 1 in the 2nd step.

Theorem 3. von-Neumann entanglement entropy is maximal iff there exists a basis in which its
(reduced) density matrix is an equally weighted diagonal matrix.

Proof. In a diagonalized reduced density matrix diag(ε1, . . . εn), the von-Neumann entropy is

S = −
∑
i

εi log εi S.t.
∑
i

εi = 1

To see its maximum apply Lagrangian multiplier

L(~ε, λ) =
∑
i

−εi log εi − λ

(∑
i

εi − 1

)

by derivative wrt εj we have
∀εi, log εi + 1 + λ = 0

there’s only one constraint characterized by λ, so all εi must have the same value.

Definition 0.1 (Maximally entangled state). For a bipartite system A∪B, the wavefunction of a
maximally entangled state is given by

|ψ〉 = 1√
D

D∑
i=1

|iA〉 ⊗ |iB〉 (6)

with D = min(dimHA, dimHB), 〈i|i′〉 = δi,i′ .
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The interpretation as maximally entangled comes from the fact that

ρA =
1

DA
1A

where we assumed D = DA WLOG. As a result, we must have

S(ρA) =
∑
i

1

DA
logDA = logDA ∼ vol A

where logDA ∼ vol A is because (assuming 1 qubit per site)

logDA = log
(
2number of sites in A

)
∝ number of sites in A

which is proptional to the volumn of A in a system where dofs are uniformly distributed. This is
the famous bound on EE:

0 ≤ S(ρA) ≤ logDA ∝ vol A (7)
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